4. If α+β+γ=180°, prove that
(a) sin(α+β)=cos(90∘−γ)
(b) sin(α+β2)=sin(90∘+γ2)
(c) tan(α2)=cot(180∘+β+γ2)
Show/Hide Solution
(a) α+β+γ=180∘
α+β=180∘−γ∴ sin(α+β)=sin(180∘−γ) =sinγ = cos(90∘−γ)
(b) α+β+γ=180∘ α+β=180∘−γ α+β2=180∘−γ2=90∘−γ2∴ sin(α+β2)=sin(90∘−γ2) =cosγ2 = sin(90∘+γ2)
(c) α+β+γ=180∘ α=180∘−(β+γ) α2=180∘−(β+γ)2=90∘−β+γ2∴ tan(α2)=tan(90∘−β+γ2) =cotβ+γ2 = cot(180∘+β+γ2)
α+β=180∘−γ∴ sin(α+β)=sin(180∘−γ) =sinγ = cos(90∘−γ)
(b) α+β+γ=180∘ α+β=180∘−γ α+β2=180∘−γ2=90∘−γ2∴ sin(α+β2)=sin(90∘−γ2) =cosγ2 = sin(90∘+γ2)
(c) α+β+γ=180∘ α=180∘−(β+γ) α2=180∘−(β+γ)2=90∘−β+γ2∴ tan(α2)=tan(90∘−β+γ2) =cotβ+γ2 = cot(180∘+β+γ2)
5. Prove that in any triangle ABC,
(i) sin(A+B)=sinC.
(ii) cos(A+B)+cosC=0.
(iii) cosA+B2=sinC2.
(iv) tanA+B2=cotC2.
Show/Hide Solution
(i) Since A+B+C=180∘,
∴A+B=180∘−C∴sin(A+B)=sin(180∘−C)∴sin(A+B)=sinC
(ii) Similarly, cos(A+B)=cos(180∘−C)
∴cos(A+B)=−cosC∴cos(A+B)+cosC=0
(iii) cos(A+B2)=cos(180∘−C2)
∴ cos(A+B2)=cos(90∘−C2)
∴ cos(A+B2)=sinC2
(iv) tan(A+B2)=tan(180∘−C2)
∴ tan(A+B2)=tan(90∘−C2)
∴ tan(A+B2)=cotC2
∴A+B=180∘−C∴sin(A+B)=sin(180∘−C)∴sin(A+B)=sinC
(ii) Similarly, cos(A+B)=cos(180∘−C)
∴cos(A+B)=−cosC∴cos(A+B)+cosC=0
(iii) cos(A+B2)=cos(180∘−C2)
∴ cos(A+B2)=cos(90∘−C2)
∴ cos(A+B2)=sinC2
(iv) tan(A+B2)=tan(180∘−C2)
∴ tan(A+B2)=tan(90∘−C2)
∴ tan(A+B2)=cotC2
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!