Processing math: 100%

Exercise (11.3) No(4, 5) - Solution


4. If α+β+γ=180°, prove that

(a)  sin(α+β)=cos(90γ)

(b)  sin(α+β2)=sin(90+γ2)

(c)  tan(α2)=cot(180+β+γ2)

Show/Hide Solution
(a)  α+β+γ=180

      α+β=180γ    sin(α+β)=sin(180γ)                        =sinγ                     = cos(90γ)


(b)  α+β+γ=180      α+β=180γ      α+β2=180γ2=90γ2    sin(α+β2)=sin(90γ2)                        =cosγ2                     = sin(90+γ2)


(c)  α+β+γ=180      α=180(β+γ)      α2=180(β+γ)2=90β+γ2    tan(α2)=tan(90β+γ2)                        =cotβ+γ2                     = cot(180+β+γ2)


5.    Prove that in any triangle ABC,

(i) sin(A+B)=sinC.

(ii) cos(A+B)+cosC=0.

(iii) cosA+B2=sinC2.

(iv) tanA+B2=cotC2.

Show/Hide Solution
(i) Since A+B+C=180,

A+B=180Csin(A+B)=sin(180C)sin(A+B)=sinC


(ii) Similarly, cos(A+B)=cos(180C)

cos(A+B)=cosCcos(A+B)+cosC=0


(iii) cos(A+B2)=cos(180C2)

 cos(A+B2)=cos(90C2)

 cos(A+B2)=sinC2


(iv) tan(A+B2)=tan(180C2)

 tan(A+B2)=tan(90C2)

 tan(A+B2)=cotC2


စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post