Processing math: 6%

Functions : Basic Problems and Solutions


1. Let the functionf:RR be given by f(x)=ax2+bx, If f(1)=7 and f(2)=2, find the values of x for which f(x)=x.

Show Solution
   f:RR   f(x)=ax2+bx   f(1)=7

2. A function \displaystyle f from \displaystyle A to \displaystyle A, where \displaystyle A is the set of positive integers, is given by \displaystyle f(x)= the sum of all possible divisors of \displaystyle x. Find the value of \displaystyle k, if \displaystyle f(15) = 3k + 6.

Show Solution
\displaystyle \begin{array}{l}\ \ \ A=\{x|x\ \text{is apositive integer }\!\!\}\!\!\text{ }\\\\\ \ \ \ f:A\to A\\\\\ \ \ f(x)=\text{the sum of all possible divisors of }x.\\\\\therefore \ f(15)=\text{the sum of all possible divisors of }15\\\\\ \ \ \ \ \ \ \ \ \ \ \ =1+3+5+15\\\\\ \ \ \ \ \ \ \ \ \ \ \ =24\\\\\ \ \ f(15)=3k+6\ \text{(given)}\\\\\therefore 3k+6=24\\\\\therefore k=6\end{array}

3. Function \displaystyle f:R\to R be given by \displaystyle f(x) = x^2 - 6. Find the possible values of \displaystyle x for which \displaystyle f(x) is unchanged by the mapping.

Show Solution
\displaystyle \begin{array}{l}f:R\to R\\\\f(x)={{x}^{2}}-6\\\\\text{When }f(x)\text{ is unchanged by mapping,}\\\\f(x)=x\\\\{{x}^{2}}-6=x\\\\{{x}^{2}}-x-6=0\\\\\therefore (x+2)(x-3)\\\\\therefore x=-2\ \text{or}\ x=3\end{array}

4. Function \displaystyle f:R\to R be given by \displaystyle f(x) = x^2 - 3x + 2. Show that \displaystyle f(x + 2) = x^2 + x.

Show Solution
\displaystyle \begin{array}{l}f:R\to R\\\\f(x)={{x}^{2}}-3x+2\\\\f(x+2)={{(x+2)}^{2}}-3(x+2)+2\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ ={{x}^{2}}+4x+4-3x-6+2\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ ={{x}^{2}}+x\end{array}

5. Given that \displaystyle f:x\mapsto \frac{2}{{ax+b}},x\ne -\frac{b}{a} such that \displaystyle f(0) = -2 and \displaystyle f(2) = 2, find the value of \displaystyle a and of \displaystyle b. Show that \displaystyle f(p) + f(– p) = 2 f(p^2).

Show Solution
\displaystyle f(x)=\frac{2}{{ax+b}},x\ne -\frac{b}{a}

\displaystyle f(0)=-2

\displaystyle \frac{2}{{a(0)+b}}=-2

\displaystyle \frac{2}{b}=-2\Rightarrow b=-1

\displaystyle f(2)=2

\displaystyle \frac{2}{{a(2)-1}}=2

\displaystyle 2a-1=1\Rightarrow a=1

\displaystyle \therefore f(x)=\frac{2}{{x-1}}

\displaystyle \therefore f(p)+f(-p)=\frac{2}{{p-1}}+\frac{2}{{-p-1}}

\displaystyle \therefore f(p)+f(-p)=\frac{2}{{p-1}}-\frac{2}{{p+1}}

\displaystyle \therefore f(p)+f(-p)=\frac{{2(p+1)-2(p-1)}}{{{{p}^{2}}-1}}

\displaystyle \therefore f(p)+f(-p)=\frac{4}{{{{p}^{2}}-1}} \displaystyle 2f({{p}^{2}})=2\left( {\frac{2}{{{{p}^{2}}-1}}} \right)=\frac{4}{{{{p}^{2}}-1}} \displaystyle \therefore f(p)+f(-p)=2f({{p}^{2}})

6. Given that \displaystyle f(x)=\frac{{ax-b}}{x}, for all real values of \displaystyle x except \displaystyle x = 0. If \displaystyle f(1) = -1 and \displaystyle f(2) = 1, find the value of \displaystyle a and of \displaystyle b and hence find the image of \displaystyle – 4 under \displaystyle f.

Show Solution
\displaystyle f(x)=\frac{{ax-b}}{x},x\ne 0

\displaystyle f(1)=-1

\displaystyle \frac{{a(1)-b}}{1}=-1

\displaystyle a-b=-1\ \ \ \ \ -----(1)

\displaystyle f(2)=1

\displaystyle \frac{{a(2)-b}}{2}=1

\displaystyle 2a-b=2\ \ \ \ \ -----(2)

\displaystyle \text{Equation}\ (2)-\text{Equation}\ (1)\Rightarrow a=3

\displaystyle \therefore 3-b=-1\Rightarrow b=4

\displaystyle \therefore f(x)=\frac{{3x-4}}{x}

\displaystyle \therefore f(-4)=\frac{{3(-4)-4}}{{(-4)}}=4

7. If \displaystyle f(x)=\frac{{b(x-a)}}{{b-a}}+\frac{{a(x-b)}}{{a-b}}, show that \displaystyle f(a+b) = f(a) + f(b).

Show Solution
\displaystyle f(x)=\frac{{b(x-a)}}{{b-a}}+\frac{{a(x-b)}}{{a-b}},a\ne b

\displaystyle f(a+b)=\frac{{b(a+b-a)}}{{b-a}}+\frac{{a(a+b-b)}}{{a-b}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{{{b}^{2}}}}{{b-a}}+\frac{{{{a}^{2}}}}{{a-b}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{{{a}^{2}}}}{{a-b}}-\frac{{{{b}^{2}}}}{{a-b}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{{{a}^{2}}-{{b}^{2}}}}{{a-b}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{(a-b)(a+b)}}{{a-b}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ =a+b

\displaystyle f(a)+f(b)=\frac{{b(a-a)}}{{b-a}}+\frac{{a(a-b)}}{{a-b}}+\frac{{b(b-a)}}{{b-a}}+\frac{{a(b-b)}}{{a-b}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =0+a+b+0

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =a+b

\displaystyle \therefore f(a+b)=f(a)+f(b)

8. A function \displaystyle f is defined by \displaystyle f(2x + 1) = x^2 - 3. Find \displaystyle a\in R such that \displaystyle f(5) = a^2 - 8.

Show Solution
\displaystyle \begin{array}{l}f(2x+1)={{x}^{2}}-3\\\\\text{Let}\ 2x+1=5,\text{then }x=2\\\\\therefore f(5)={{2}^{2}}-3=1\\\\f(5)={{a}^{2}}-8\ \text{(given)}\\\\\therefore {{a}^{2}}-8=1\\\\\therefore {{a}^{2}}=9\Rightarrow a=\pm 3\end{array}

9. The function \displaystyle f is defined by \displaystyle f(x) = 7^x . Prove that \displaystyle f(x + 2) - 10 f(x + 1) + 21 f(x) = 0.

Show Solution
\displaystyle \begin{array}{l}f(x)={{7}^{x}}\\\\\therefore f(x+2)-10f(x+1)+21f(x)\\\\={{7}^{{x+2}}}-10({{7}^{{x+1}}})+21({{7}^{x}})\\\\={{7}^{2}}\cdot {{7}^{x}}-10(7\cdot {{7}^{x}})+21({{7}^{x}})\\\\={{7}^{x}}(49-70+21)\\\\={{7}^{x}}(0)\\\\=0\end{array}

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post