2019 SAMPLE QUESTION
MATRICULATION EXAMINATION
DEPARTMENT OF MYANMAR EXAMINATION
MATHEMATICS Time Allowed: 3 hours
DEPARTMENT OF MYANMAR EXAMINATION
MATHEMATICS Time Allowed: 3 hours
WRITE YOUR ANSWERS IN THE ANSWER BOOKLET.
SECTION (A)
(Answer ALL questions) |
1.(a) Given that f(x)=3x−4,g(x)=x2−1. Find the values of x which satisfy the equation (g∘f)(x)=9−3x.
(3 marks)
Show/Hide Solution
f(x)=3x−4, g(x)=x2−1. (g∘f)(x)=9−3x g(f(x))=9−3x g(3x−4)=9−3x (3x−4)2−1=9−3x 9x2−21x+6=0 (3x−1)(x−2)=0∴
1.(b) When \displaystyle f(x) = (x + 2)^3(x - 1) - px + 6 is divided by \displaystyle x + 3, the remainder is \displaystyle 28. Find the value of \displaystyle p and hence show that \displaystyle x - 1 is a factor of \displaystyle f(x).
(3 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \ f(x)={{(x+2)}^{3}}(x-1)-px+6\\\\\ \ \ \ \ \text{When}\ f(x)\ \text{is divided by}\ x+3\ \text{the remainder is}\ 28.\\\\\therefore \ \ \ f(-3)=28\\\\\therefore \ \ \ {{(-3+2)}^{3}}(-3-1)+3p+6=28\\\\\therefore \ \ \ 3p+10=28\\\\\therefore \ \ \ 3p=18\\\\\therefore \ \ \ p=6\\\\\therefore \ \ \ f(x)={{(x+2)}^{3}}(x-1)-6x+6\\\\\therefore \ \ \ f(1)={{(1+2)}^{3}}(1-1)-6(1)+6=0\\\\\ \ \ \ \ \text{When}\ x-1\ \text{is a factor of }f(x).\end{array}
2.(a) The coefficient of \displaystyle x^3 in the expansion of \displaystyle (1 + \displaystyle \frac{ x}{2} )^n is \displaystyle 7, find the value of \displaystyle n.
(3 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \ {{(r+1)}^{{\text{th}}}}\text{term in the expansion of}{{\displaystyle \left( {1+\displaystyle \displaystyle \frac{x}{2}} \right)}^{n}}={}^{n}{{C}_{r}}{{\displaystyle \left( {\displaystyle \displaystyle \frac{1}{2}} \right)}^{r}}{{x}^{r}}\\\\\ \ \ \ \ \text{For }{{x}^{3}},\ r=3.\\\\\ \ \ \ \ \text{Coefficient of }{{x}^{3}}={}^{n}{{C}_{3}}{{\displaystyle \left( {\displaystyle \displaystyle \frac{1}{2}} \right)}^{3}}\\\\\ \ \ \ \ \text{By the problem,}\\\\\ \ \ \ \ {}^{n}{{C}_{3}}{{\displaystyle \left( {\displaystyle \displaystyle \frac{1}{2}} \right)}^{3}}=7\\\\\ \ \ \ \ \displaystyle \displaystyle \frac{{n(n-1)(n-2)}}{{1\times 2\times 3}}\displaystyle \left( {\displaystyle \displaystyle \frac{1}{8}} \right)=7\\\\\therefore \ \ \ n(n-1)(n-2)=8\times 7\times 6\\\\\therefore \ \ \ n(n-1)(n-2)=8(8-1)(8-2)\\\\\therefore \ \ \ n=8\end{array}
2.(b) Find n, if \displaystyle 1 + 3 + 3^2 + 3^3 + ... + 3^n = 121.
(3 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ 1+3+{{3}^{2}}+{{3}^{3}}+...+{{3}^{n}}=121\\\\\therefore \ \ 3+{{3}^{2}}+{{3}^{3}}+...+{{3}^{n}}=120\\\\\ \ \ \ \text{Since }\displaystyle \displaystyle \frac{{{{3}^{2}}}}{3}=3\ \text{and }\displaystyle \displaystyle \frac{{{{3}^{3}}}}{{{{3}^{2}}}}=3,\\\\\ \ \ \ \text{Given terms are in G}\text{.P}\text{.}\\\\\therefore \ \ a=3,\ r=3\ \ \text{and}\ {{S}_{n}}=120\\\\\ \ \ \ \text{Since}\ {{S}_{n}}=\displaystyle \displaystyle \frac{{a({{r}^{n}}-1)}}{{r-1}},\\\\\ \ \ \ \displaystyle \displaystyle \frac{{3({{3}^{n}}-1)}}{{3-1}}=120\\\\\therefore \ \ {{3}^{n}}-1=80\\\\\therefore \ \ {{3}^{n}}=81\Rightarrow n=4\end{array}
3.(a) Find two matrices of the form \displaystyle X=\displaystyle \left( {\begin{array}{*{20}{c}} x & 1 \\ 0 & y \end{array}} \right) such that \displaystyle X^2 = I.
(3 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ X=\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} x & 1 \\ 0 & y \end{array}} \right)\\\\\ \ \ \ {{X}^{2}}=I\ \ \ \displaystyle \displaystyle \left[ {\because \text{given}} \right]\\\\\therefore \ \ \ \displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} x & 1 \\ 0 & y \end{array}} \right)\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} x & 1 \\ 0 & y \end{array}} \right)=\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} 1 & 0 \\ 0 & 1 \end{array}} \right)\\\\\therefore \ \ \ \displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {{{x}^{2}}} & {x+y} \\ 0 & {{{y}^{2}}} \end{array}} \right)=\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} 1 & 0 \\ 0 & 1 \end{array}} \right)\\\\\therefore \ \ \ {{x}^{2}}=\pm 1\ \ \ \ ----(1)\\\\\ \ \ \ \ x+y=0\ \ ----(2)\\\\\ \ \ \ \ {{y}^{2}}=\pm 1\ \ \ \ ----(3)\\\\\ \ \ \ \ \text{By equation (2),}\\\\\ \ \ \ \ \text{When }x=-1\text{,}\ y=1\text{ and}\\\\\ \ \ \ \ \text{when }x=1\text{,}\ y=-1.\\\\\therefore \ \ \ X=\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {-1} & 1 \\ 0 & 1 \end{array}} \right)\ \ \text{(or)}\ X=\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} 1 & 1 \\ 0 & {-1} \end{array}} \right).\end{array}
3.(b) Two balls are drawn at random at the same time from a box containing \displaystyle 3 red balls and \displaystyle 8 white balls. Find the probability that both balls will be white.
(3 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \text{Number of red balls}=3\\\\\ \ \ \text{Number of white balls}=8\\\\\ \ \ \text{Total number of balls}=11\\\\\ \ \ \text{When two balls are drawn at random at the same time,}\\\\\ \ \ P(\text{both balls}\ \text{are white)}\\\\\ \ \ =P({{\text{1}}^{{\text{st}}}}\text{ ball is white and }{{\text{2}}^{{\text{nd}}}}\text{ ball is also white)}\\\\\ \ \ =\displaystyle \displaystyle \frac{8}{{11}}\times \displaystyle \displaystyle \frac{7}{{10}}\\\\\ \ \ =\displaystyle \displaystyle \frac{{28}}{{55}}\end{array}
4.(a) In the figure \displaystyle AT is a tangent segment; \displaystyle ABEF and \displaystyle BCD are straight lines. If \displaystyle AT = 6\ \text{cm}, AB = BE = 2\ \text{cm}, BC = 3\ \text{cm}, then find \displaystyle EF and \displaystyle CD.
(3 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \text{Since}\ AE\cdot AF=A{{T}^{2}},\\\\\ \ \ 4(4+EF)=36\\\\\therefore \ 4+EF=9\\\\\therefore \ EF=5\ \text{cm}\\\\\ \ \ \ \text{Since}\ BC\cdot BD=BE\cdot BF,\\\\\ \ \ 3(3+CD)=2\times 7\\\\\therefore \ 3+CD=\displaystyle \displaystyle \frac{{14}}{3}\\\\\therefore \ EF=\displaystyle \displaystyle \frac{5}{3}\ \text{cm}\end{array}
4.(b) The coordinates of \displaystyle A, B and \displaystyle C are \displaystyle (1, 2), (7, 1) and \displaystyle (- 3, 7) respectively. If \displaystyle O is the origin and \displaystyle \overrightarrow{{OC}}=h\ \overrightarrow{{OA}}+k\ \overrightarrow{{OB}}, where \displaystyle h and \displaystyle k are constants, find the value of \displaystyle h and of \displaystyle k.
(3 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \overrightarrow{{OA}}= \displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} 1 \\ 2 \end{array}} \right),\ \overrightarrow{{OB}}= \displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} 7 \\ 1 \end{array}} \right),\ \overrightarrow{{OC}}= \displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {-3} \\ 7 \end{array}} \right).\\\\\ \ \ \ \overrightarrow{{OC}}=h\ \overrightarrow{{OA}}+k\ \overrightarrow{{OB}}\ \ \displaystyle \displaystyle \left[ {\text{given}} \right]\\\\\ \ \ \ \displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {-3} \\ 7 \end{array}} \right)= \displaystyle h\displaystyle \left( {\begin{array}{*{20}{c}} 1 \\ 2 \end{array}} \right)+ \displaystyle k\displaystyle \left( {\begin{array}{*{20}{c}} 7 \\ 1 \end{array}} \right)\\\\\ \ \ \ \displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {-3} \\ 7 \end{array}} \right)= \displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} h \\ {2h} \end{array}} \right)+ \displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {7k} \\ k \end{array}} \right)\\\\\ \ \ \ \displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {-3} \\ 7 \end{array}} \right)= \displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {h+7k} \\ {2h+k} \end{array}} \right)\\\\\therefore \ \ \ h+7k=-3\ \ \ \ \ \ \ \ \ -----(1)\\\\\ \ \ \ \ 2h+k=7\ \ \ \ \ \ \ \ \ \ \ -----(2)\\\\\ \ \ \ \text{Solving equations (1) and (2),}\\\\\ \ \ \ h= \displaystyle \displaystyle \frac{{13}}{5}\ \text{and}\ k= \displaystyle -\displaystyle \frac{4}{5}\end{array}
5.(a) In \displaystyle ΔABC, ∠A : ∠B : ∠C = 3 : 4 : 5 and \displaystyle AC = \sqrt{6}, find \displaystyle BC.
(3 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \ \text{In}\ \vartriangle ABC\text{, }AC=\sqrt{6}\\\\\ \ \ \ \ \angle A\ \text{: }\angle B\text{ : }\angle C\text{ = 3 : 4 : 5}\\\\\ \ \ \ \ \text{Let}\ \angle A=3k,\text{ }\angle B=\text{4}k,\ \text{and }\angle C=5k\\\\\ \ \ \ \ \text{Since}\ \angle A\ \text{+ }\angle B\text{ + }\angle C=180{}^\circ ,\\\\\,\ \ \ \ 12k=180{}^\circ \Rightarrow k=15{}^\circ \\\\\therefore \ \ \ \angle A=45{}^\circ ,\text{ }\angle B=60{}^\circ ,\ \text{and }\angle C=75{}^\circ .\\\\\ \ \ \ \ \text{Since}\ \displaystyle \displaystyle \frac{{BC}}{{\sin A}}=\displaystyle \displaystyle \frac{{AC}}{{\sin B}},\\\\\ \ \ \ \ BC=\displaystyle \displaystyle \frac{{AC\sin A}}{{\sin B}}\\\\\ \ \ \ \ BC=\displaystyle \displaystyle \frac{{\sqrt{6}\sin 45{}^\circ }}{{\sin 60{}^\circ }}\\\\\ \ \ \ \ \ \ \ \ \ =\displaystyle \displaystyle \frac{{\sqrt{6}\times \displaystyle \displaystyle \frac{{\sqrt{2}}}{2}}}{{\displaystyle \displaystyle \frac{{\sqrt{3}}}{2}}}\\\\\ \ \ \ \ \ \ \ \ \ =2\end{array}
5.(b) Given that the gradient of the curve \displaystyle y = x^2 + ax + b at the point \displaystyle (2, -1) is \displaystyle 1. Find the values of \displaystyle a and \displaystyle b.
(3 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \ \text{Curve:}\ y={{x}^{2}}+ax+b\\\\\ \ \ \ \ (2,-1)\ \text{lies on the curve}\text{.}\\\\\therefore \ \ \ 4+2a+b=-1\\\\\therefore \ \ \ b=-5-2a\\\\\ \ \ \ \displaystyle \displaystyle \frac{{dy}}{{dx}}=2x+a\\\\\ \ \ \ \text{At }(2,-1),\ \text{the gradient of curve is 1}\text{.}\\\\\therefore \ \ {{\displaystyle \left. {\displaystyle \displaystyle \frac{{dy}}{{dx}}} \right|}_{{(2,-1)}}}=1\\\\\therefore \ \ 4+a=1\Rightarrow a=-3\\\\\therefore \ \ b=-5-2(-3)=1\end{array}
SECTION (B)
(Answer any FOUR questions)
6.(a) Functions \displaystyle f : R\to R and \displaystyle g: R\to R are defined by \displaystyle f(x) = x + 7 and \displaystyle g(x) = 3x - 1. Find the value of \displaystyle x for which \displaystyle ({{g}^{{-1}}}\circ f)(x)=({{f}^{{-1}}}\circ g)(x)+8.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \ f:R\to R,\ f(x)=x+7\\\\\ \ \ \ \ g:R\to R,\ g(x)=3x-1\\\\\ \ \ \ \ \text{Let }({{g}^{{-1}}}\circ f)(x)=y\\\\\therefore \ \ \ {{g}^{{-1}}}(f(x))=y\\\\\therefore \ \ \ f(x)=g(y)\\\\\therefore \ \ \ x+7=3y-1\\\\\therefore \ \ \ y=\displaystyle \displaystyle \frac{{x+8}}{3}\Rightarrow ({{g}^{{-1}}}\circ f)(x)=\displaystyle \displaystyle \frac{{x+8}}{3}\\\\\ \ \ \ \ \text{Let }({{f}^{{-1}}}\circ g)(x)=z\\\\\therefore \ \ \ {{f}^{{-1}}}(g(x))=z\\\\\therefore \ \ \ g(x)=f(z)\\\\\therefore \ \ \ 3x-1=z+7\\\\\therefore \ \ \ z=3x-8\Rightarrow ({{f}^{{-1}}}\circ g)(x)=3x-8\\\\\ \ \ \ \ ({{g}^{{-1}}}\circ f)(x)=({{f}^{{-1}}}\circ g)(x)+8\ \ \displaystyle \left[ {\text{given}} \right]\\\\\therefore \ \ \ \displaystyle \displaystyle \frac{{x+8}}{3}=3x-8+8\\\\\therefore \ \ \ 9x=x+8\\\\\therefore \ \ \ x=1\end{array}
6.(b) Given that \displaystyle x^3 - 2 x^2 - 3 x - 11 and \displaystyle x^3 - x^2 - 9 have the same remainder when divided by \displaystyle x + a, determine the values of \displaystyle a and the corresponding remainders.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \ \ \text{Let}\ f(x)={{x}^{3}}-2{{x}^{2}}-3x-11\ \text{and}\\\\\ \ \ \ \ \ g(x)={{x}^{3}}-{{x}^{2}}-9\\\\\ \ \ \ \ \ f(x)\ \text{and}\ g(x)\ \text{have the same remainder }\\\ \ \ \ \ \ \text{when divided by }x\text{ + }a.\\\\\therefore \ \ \ \ f(-a)=g(-a)\\\\\therefore \ \ \ \ \ -{{a}^{3}}-2{{a}^{2}}+3a-11=-{{a}^{3}}-{{a}^{2}}-9\\\\\therefore \ \ \ \ \ {{a}^{2}}-3a+2=0\\\\\therefore \ \ \ \ \ (a-1)(a-2)=0\\\\\therefore \ \ \ \ \ a=1\ (\text{or)}\ a=2\\\\\therefore \ \ \ \ \ \text{When}\ a=1,\text{the remainder }=g(-1)={{(-1)}^{3}}-{{(-1)}^{2}}-9=-11\\\\\therefore \ \ \ \ \ \text{When}\ a=2,\text{the remainder }=g(-2)={{(-2)}^{3}}-{{(-2)}^{2}}-9=-21\end{array}
7.(a) Let \displaystyle J^{+} be the set of all positive integers. A binary operation on the set \displaystyle J^{+} is defined by \displaystyle a⊙ b = a^2 + ab + b^2. Prove that the binary operation is commutative. Find the value of \displaystyle x such that \displaystyle 2⊙x = 12.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \ \ {{J}^{+}}\text{= the set of positive integers}\text{.}\ \\\\\ \ \ \ \ \ a\odot b={{a}^{2}}+ab+{{b}^{2}},\ a,b\in {{J}^{+}}\\\\\therefore \ \ \ \ b\odot a={{b}^{2}}+ba+{{a}^{2}}={{a}^{2}}+ab+{{b}^{2}}\\\\\therefore \ \ \ \ a\odot b=b\odot a\\\\\therefore \ \ \ \ \text{The binary operation is commutative}\text{.}\\\\\ \ \ \ \ \ 2\odot x=12\\\\\therefore \ \ \ \ {{2}^{2}}+2x+{{x}^{2}}=12\\\\\therefore \ \ \ \ {{x}^{2}}+2x-8=12\\\\\therefore \ \ \ \ (x-2)(x+4)=0\\\\\therefore \ \ \ \ x=2\ \text{or}\ x=-4\notin {{J}^{+}}\\\\\therefore \ \ \ \ x=2\end{array}
7.(b) If the coefficient of \displaystyle x^2 in the expansion of \displaystyle (2x + k)^6 is equal to the coefficient of \displaystyle x^5 in the expansion of \displaystyle (2 + kx)^8, find \displaystyle k.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \ \ \text{ }\ \ {{(r+1)}^{{\text{th}}}}\text{ term in the expansion of }{{(2x+k)}^{6}}\\\\\ \ \ \ \ \ ={}^{6}{{C}_{r}}\ {{(2x)}^{{6-r}}}{{k}^{r}}\\\\\ \ \ \ \ \ ={}^{6}{{C}_{r}}\ {{2}^{{6-r}}}{{k}^{r}}{{x}^{{6-r}}}\\\\\ \ \ \ \ \text{For }{{x}^{2}},\ 6-r=2\Rightarrow r=4\\\\\therefore \ \ \ \ \ \ \ \text{coefficient of }{{x}^{2}}\ \text{in the expansion of }{{(2x+k)}^{6}}\\\\\ \ \ \ \ \ ={}^{6}{{C}_{r}}\ {{2}^{2}}{{k}^{4}}\\\\\ \ \ \ \ \ \ \ \ \ {{(r+1)}^{{\text{th}}}}\text{ term in the expansion of }{{(2+kx)}^{8}}\\\\\ \ \ \ \ \ ={}^{8}{{C}_{r}}\ {{2}^{{8-r}}}{{(kx)}^{r}}\\\\\ \ \ \ \ \ ={}^{8}{{C}_{r}}\ {{2}^{{8-r}}}{{k}^{r}}{{x}^{r}}\\\\\ \ \ \ \ \text{For }{{x}^{5}},\ r=5\\\\\therefore \ \ \ \ \ \ \ \text{coefficient of }{{x}^{5}}\ \text{in the expansion of }{{(2+kx)}^{8}}\\\\\ \ \ \ \ \ ={}^{8}{{C}_{5}}\ {{2}^{3}}{{k}^{5}}\\\\\ \ \ \ \ \text{By the problem, }\\\\\ \ \ \ \ {}^{6}{{C}_{4}}\ {{2}^{2}}{{k}^{4}}={}^{8}{{C}_{5}}\ {{2}^{3}}{{k}^{5}}\\\\\therefore \ \ \ {}^{6}{{C}_{2}}\ ={}^{8}{{C}_{3}}\ 2k\ \ \displaystyle \left[ {\because {}^{n}{{C}_{r}}={}^{n}{{C}_{{n-r}}}} \right]\\\\\therefore \ \ \ \displaystyle \displaystyle \frac{{6\times 5}}{{1\times 2}}\ =\displaystyle \displaystyle \frac{{8\times 7\times 6}}{{1\times 2\times 3}}\ (2k)\\\\\therefore \ \ \ k=\displaystyle \displaystyle \frac{{15}}{{112}}\end{array}
8.(a) Find the solution set in R of the inequation \displaystyle x^2 - 4x \le 0 by algebraic method and illustrate it on the number line.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ {{x}^{2}}-4x\le 0\\\ \\\ \ \ \ x(x-4)\le 0\\\\\ \ \ \ \text{Case I}\\\\\ \ \ \ x\le 0\ \text{(or)}\ x-4\ge 0\\\\\ \ \ \ x\le 0\ \text{(or)}\ x\ge 4\end{array}
There is no point to satisfy both conditions.
\displaystyle \begin{array}{l}\ \ \ \ \text{Case II}\\\\\ \ \ \ x\ge 0\ \text{(or)}\ x-4\le 0\\\\\ \ \ \ x\ge 0\ \text{(or)}\ x\le 4\end{array}
\displaystyle \therefore \ \ 0\le x\le 4
\displaystyle \therefore \ \ \text{Solution set}\ =\{x\in R|0\le x\le 4\}.
Number line
8.(b) The four angles of a quadrilateral are in \displaystyle A.P. Given that the value of the largest angle is three times the value of the smallest angle, find the values of all four angles.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \text{Let the measures of the four angles }\\\ \ \ \text{of the quadrilateral be}\,\alpha ,\beta ,\gamma \ \text{and}\ \delta \\\ \ \ \text{and }\alpha \ \text{be the smallest angle}\text{.}\\\\\ \ \ \text{By the problem,}\\\\\ \ \ \alpha ,\beta ,\gamma \text{,}\ \delta \ \text{is an }A.P.\\\\\ \ \ \text{Let the common difference be }d.\\\\\therefore \ \alpha =\alpha \\\\\ \ \ \beta =\alpha +d\\\\\ \ \ \gamma =\alpha +2d\\\\\ \ \ \delta =\alpha +3d\\\\\ \ \ \text{Since}\ \alpha +\beta +\gamma \text{+}\ \delta =360{}^\circ ,\\\\\ \ \ 4\alpha +6d=360{}^\circ \\\\\therefore \ 2\alpha +3d=180{}^\circ \ -------(1)\\\\\ \ \ \text{By the problem,}\\\\\ \ \ \delta =3\alpha \\\\\ \ \ \alpha +3d=3\alpha \\\\\therefore \ 2\alpha -3d=0{}^\circ \ \ \ -------(2)\\\\\ \ \ \text{Solving equations (1) and (2),}\\\\\ \ \ \alpha =45{}^\circ \ \text{and}\ d=30{}^\circ \\\\\therefore \ \alpha =45{}^\circ ,\beta =75{}^\circ ,\gamma =105{}^\circ \ \text{and}\ \delta =135{}^\circ \ \ \ \end{array}
9.(a) Given that \displaystyle 8, p and \displaystyle q are three consecutive terms of an \displaystyle A.P. while \displaystyle p, q and \displaystyle 36 are three consecutive terms of a \displaystyle G.P., find the possible values of \displaystyle p and \displaystyle q.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ 8,p,q\ \text{is an }A.P.\\\\\therefore \ \ p-8=q-p\\\\\therefore \ \ q=2p-8\\\\\ \ \ \ p,q,36\ \text{is a }G.P.\\\\\therefore \ \ \displaystyle \displaystyle \frac{q}{p}=\displaystyle \displaystyle \frac{{36}}{q}\\\\\therefore \ \ {{q}^{2}}=36p\\\\\therefore \ \ {{(2p-8)}^{2}}=36p\\\\\therefore \ \ {{p}^{2}}-17p+16=0\\\\\therefore \ \ (p-1)(p-16)=0\\\\\therefore \ \ p=1\,\ (\text{or)}\ p=16\\\\\ \ \ \text{When}\ p=1,\ q=2(1)-8=-6.\\\\\ \ \ \text{When}\ p=16,\ q=2(16)-8=24.\end{array}
9.(b) Given that \displaystyle D=\displaystyle \left( {\begin{array}{*{20}{c}} {\ \ 2} & {-3} \\ {-2} & {\ \ 1} \end{array}} \right) and that \displaystyle D^2 - 3D - kI = O, find the value of \displaystyle k.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}D=\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {\ \ 2} & {-3} \\ {-2} & {\ \ 1} \end{array}} \right)\\\\{{D}^{2}}-3D-kI=O\\\\\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {\ \ 2} & {-3} \\ {-2} & {\ \ 1} \end{array}} \right)\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {\ \ 2} & {-3} \\ {-2} & {\ \ 1} \end{array}} \right)-3\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {\ \ 2} & {-3} \\ {-2} & {\ \ 1} \end{array}} \right)-k\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} 1 & 0 \\ 0 & 1 \end{array}} \right)=\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} 0 & 0 \\ 0 & 0 \end{array}} \right)\\\\\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {\ \ 4+6} & {-6-3} \\ {-4-2} & {\ \ 6+1} \end{array}} \right)+\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {-6} & {\ \ 9} \\ {\ \ 6} & {-3} \end{array}} \right)+\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {-k} & 0 \\ 0 & {-k} \end{array}} \right)=\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} 0 & 0 \\ 0 & 0 \end{array}} \right)\\\\\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {\ \ 4+6-6-k} & {-6-3+9+0} \\ {-4-2+6+0} & {\ \ 6+1-3-k} \end{array}} \right)=\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} 0 & 0 \\ 0 & 0 \end{array}} \right)\\\\\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} {\ \ 4-k} & 0 \\ 0 & {\ \ 4-k} \end{array}} \right)=\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} 0 & 0 \\ 0 & 0 \end{array}} \right)\\\\\therefore 4-k=0\\\\\therefore k=4\end{array}
10.(a) Given that \displaystyle A=\displaystyle \left( {\begin{array}{*{20}{c}} 3 & 1 \\ 2 & 1 \end{array}} \right) and \displaystyle B=\displaystyle \left( {\begin{array}{*{20}{c}} {\ \ \ 2} & {\ \ 5} \\ {-1} & {-3} \end{array}} \right), write down the inverse matrix of \displaystyle A. Use your result to find the matrix \displaystyle Q such that \displaystyle QA = B.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ A=\displaystyle \displaystyle \left( {\begin{array}{*{20}{c}} 3 & 1 \\ 2 & 1 \end{array}} \right),B=\displaystyle \left( {\begin{array}{*{20}{c}} {\ \ \ 2} & {\ \ 5} \\ {-1} & {-3} \end{array}} \right)\\\\\ \ \ \det A=3-2=1\ne 0.\\\\\therefore \ {{A}^{{-1}}}\ \text{exists}\text{.}\\\\\therefore \ {{A}^{{-1}}}=\displaystyle \frac{1}{{\det A}}\displaystyle \left( {\begin{array}{*{20}{c}} {\ \ 1} & {-1} \\ {-2} & {\ \ 3} \end{array}} \right)=\displaystyle \left( {\begin{array}{*{20}{c}} {\ \ 1} & {-1} \\ {-2} & {\ \ 3} \end{array}} \right)\\\\\ \ \ QA=B\ \ \ \displaystyle \left[ {\text{given}} \right]\\\\\therefore \ QA{{A}^{{-1}}}=B{{A}^{{-1}}}\\\\\therefore \ QI=B{{A}^{{-1}}}\\\\\therefore \ Q=B{{A}^{{-1}}}\\\\\therefore \ Q=\displaystyle \left( {\begin{array}{*{20}{c}} {\ \ \ 2} & {\ \ 5} \\ {-1} & {-3} \end{array}} \right)\displaystyle \left( {\begin{array}{*{20}{c}} {\ \ 1} & {-1} \\ {-2} & {\ \ 3} \end{array}} \right)\\\\\therefore \ Q=\displaystyle \left( {\begin{array}{*{20}{c}} {2-10} & {-2+15} \\ {-1+6} & {\ \ \ 1-9} \end{array}} \right)\\\\\therefore \ Q=\displaystyle \left( {\begin{array}{*{20}{c}} {-8} & {13} \\ 5 & {-8} \end{array}} \right)\end{array}
10.(b) How many \displaystyle 3 digit numerals can you form from \displaystyle 1, 5 and \displaystyle 7, without repeating any digit ? Find the probability of a numeral which begins with \displaystyle 1.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\therefore \ \ \ \text{Number of possible outcomes}=6\\\\\ \ \ \ \ \text{Set of favourable outcomes for a numeral which begins with }1\\\\\ \ \ \ \ =\{157,175\}\\\\\therefore \ \ \ \text{Number of favourable outcomes}=2\\\\\therefore \ \ \ P(\text{a numeral which begins with}\ 1)=\displaystyle \displaystyle \frac{2}{6}=\displaystyle \frac{1}{3}\end{array}
SECTION (C)
(Answer any THREE questions)
11.(a) \displaystyle OA and \displaystyle OB are two radii of a circle meeting at right angle. From \displaystyle A and \displaystyle B, two parallel chords \displaystyle AX, BY are drawn. Prove \displaystyle AY ⊥ BX.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \text{Let}\ AY\ \text{cut}\ BX\ \text{at}\ D.\\\\\therefore \ \ \alpha =\gamma \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\angle \text{s in same arc)}\\\\\ \ \ \ \text{But }\alpha =\gamma =\displaystyle \frac{1}{2}\angle AOB\ \ \ (\text{inscribed }\angle =\displaystyle \frac{1}{2}\text{central }\angle \text{)}\\\\\therefore \ \ \alpha =\gamma =\displaystyle \frac{1}{2}(90{}^\circ )=45{}^\circ \\\\\ \ \ \ \text{Since}\ AX\parallel BY,\ \alpha =\beta \ \ (\text{alternating }\angle \text{s)}\\\\\therefore \ \ \beta =45{}^\circ \\\\\ \ \ \ \text{In}\ \vartriangle BDY,\ \\\\\ \ \ \ \angle ADB=\beta +\gamma \ \ \ \ (\text{ext: }\angle \ \text{of}\ \vartriangle \ \text{=}\ \text{sum of opp: int: }\angle \text{s})\\\\\therefore \ \ \angle ADB=90{}^\circ \\\\\therefore \ \ AY\bot BX.\end{array}
11.(b) Given \displaystyle ABCD is a trapezium in which \displaystyle AB ∥ DC and \displaystyle ∠ADB = ∠C. Prove that \displaystyle AD^2 : BC^2 = AB : CD.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \text{Since}\ AB\parallel CD,\ \beta =\delta \ \ (\text{alternating }\angle \text{s)}\\\\\ \ \ \ \text{In}\ \vartriangle ABD\ \text{and}\ \vartriangle BDC,\\\\\ \ \ \ \angle ADB=\angle C\ \ \ \ (\text{given)}\\\\\ \ \ \ \beta =\delta \ \ \ (\text{proved)}\\\\\therefore \ \ \vartriangle ABD\ \sim \ \vartriangle BDC\ \ (\text{AA corollary)}\\\\\therefore \ \ \displaystyle \frac{{\alpha (\Delta ABD)}}{{\alpha (\Delta BDC)}}=\frac{{A{{D}^{2}}}}{{B{{C}^{2}}}}-----(1)\\\\\ \ \ \ \text{But }\vartriangle ABD\ \text{and}\ \vartriangle BDC\ \text{have the same altitude}\text{.}\\\\\therefore \ \ \displaystyle \frac{{\alpha (\Delta ABD)}}{{\alpha (\Delta BDC)}}=\frac{{AB}}{{CD}}-----(2)\\\\\therefore \ \ \text{From equations (1) and (2),}\\\\\ \ \ \ \displaystyle \frac{{A{{D}^{2}}}}{{B{{C}^{2}}}}=\frac{{AB}}{{CD}}\end{array}
12.(a) From any point \displaystyle D on the base \displaystyle BC of \displaystyle ∆ ABC a line is drawn meeting \displaystyle AB at \displaystyle E and such that \displaystyle ∠ BDE = ∠A. Prove that \displaystyle BE · BA = BD · BC.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \angle BDE\text{ }+\angle CDE=180{}^\circ \ \ (\text{supplementry }\angle \text{s)}\\\\\ \ \ \ \text{Since}\ \angle BDE=\angle A\ \ \ \ \ (\text{given)}\\\\\ \ \ \ \angle A\text{ }+\angle CDE=180{}^\circ \\\\\therefore \ \ \ ACDE\ \text{is cyclic}\text{.}\\\\\therefore \ \ \ BE\cdot BA=BD\cdot BC\end{array}
12.(b) Express \displaystyle \cos 3x in terms of \displaystyle \cos x.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \cos 3x=\cos (2x+x)\\\\\ \ \ \ \ \ \ \ \ \ \ =\cos 2x\cos x-\sin 2x\sin x\\\\\ \ \ \ \ \ \ \ \ \ \ =(2{{\cos }^{2}}x-1)\cos x-(2\sin x\cos x)\sin x\\\\\ \ \ \ \ \ \ \ \ \ \ =2{{\cos }^{3}}x-\cos x-2{{\sin }^{2}}x\cos x\\\\\ \ \ \ \ \ \ \ \ \ \ =2{{\cos }^{3}}x-\cos x-2\cos x(1-{{\cos }^{2}}x)\\\\\ \ \ \ \ \ \ \ \ \ \ =2{{\cos }^{3}}x-\cos x-2\cos x+2{{\cos }^{3}}x\\\\\ \ \ \ \ \ \ \ \ \ \ =4{{\cos }^{3}}x-3\cos x\end{array}
ေအာက္ပါ ပံုေသးနည္းမ်ားကို အသံုးျပဳ၍ တြက္ပါသည္။
\displaystyle \begin{array}{l}\underline{{\text{Pythagorean Identity}}}\\\\{{\sin }^{2}}x+{{\cos }^{2}}x=1\\\\\underline{{\text{Sum and Difference Formula}}}\\\\\cos (x+y)=\cos \cos y-\sin x\sin y\\\\\underline{{\text{Double Angle Formulae}}}\\\\\sin 2x=2\sin x\cos x\\\\\cos 2x=2{{\cos }^{2}}x-1=1-2{{\sin }^{2}}x\end{array} |
13.(a) Solve \displaystyle ∆ABC, with \displaystyle BC = 3, AC = 4, AB = 6.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \text{In}\ \vartriangle ABC,\ BC=3,AC=4,AB=6\\\\\ \ \ \ \text{To Find : }\alpha ,\ \beta ,\ \gamma \\\\\ \ \ \ \text{By the law of cosines,}\\\\\ \ \ \ \text{cos}\alpha =\displaystyle \frac{{A{{C}^{2}}+A{{B}^{2}}-B{{C}^{2}}}}{{2AC\cdot AB}}\\\\\therefore \ \ \text{cos}\alpha =\displaystyle \frac{{{{4}^{2}}+{{6}^{2}}-{{3}^{2}}}}{{2(4)(6)}}\\\\\therefore \ \ \text{cos}\alpha =\displaystyle \frac{{43}}{{48}}=0.8958\\\\\therefore \ \ \alpha =26{}^\circ 2{3}'\\\\\ \ \ \ \text{Similarly,}\\\\\ \ \ \ \text{cos}\beta =\displaystyle \frac{{B{{C}^{2}}+A{{B}^{2}}-C{{C}^{2}}}}{{2AC\cdot AB}}\\\\\therefore \ \ \text{cos}\beta =\displaystyle \frac{{{{3}^{2}}+{{6}^{2}}-{{4}^{2}}}}{{2(3)(6)}}\\\\\therefore \ \ \text{cos}\beta =\displaystyle \frac{{29}}{{36}}=0.8056\\\\\therefore \ \ \beta =36{}^\circ 2{0}'\\\\\therefore \ \ \gamma =180{}^\circ -(26{}^\circ 2{3}'+36{}^\circ 2{0}')\\\\\therefore \ \ \gamma =117{}^\circ 1{7}'\end{array}
13.(b) Given that \displaystyle y = \cos^2 x, prove that \displaystyle \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}+4y=2
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \ y={{\cos }^{2}}x\\\\\ \ \ \ \ \displaystyle \frac{{dy}}{{dx}}=2\cos x(-\sin x)=-\sin 2x\\\\\ \ \ \ \displaystyle \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=-\cos 2x(2)=-2\cos 2x\\\\\therefore \ \ \displaystyle \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}+4y=-2\cos 2x+4{{\cos }^{2}}x\\\\\therefore \ \ \displaystyle \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}+4y=-2(2{{\cos }^{2}}x-1)+4{{\cos }^{2}}x\\\\\therefore \ \ \displaystyle \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}+4y=-4{{\cos }^{2}}x+2+4{{\cos }^{2}}x\\\\\therefore \ \ \displaystyle \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}+4y=2\end{array}
14.(a) If apiece of string of fixed length is made to enclose a rectangle, show that the enclosed area is the greatest when the rectangle is a square.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \ \ \ \text{Let the length of the string be}\ L.\\\\\ \ \ \ \ \ \ \text{Since the length of wire is fixed,}\ \\\ \ \ \ \ \ \ L\ \text{is a constant}\text{.}\\\\\ \ \ \ \ \ \ \text{Let the length and the breadth of }\\\ \ \ \ \ \ \ \text{the rectangle be }x\ \text{and }y\ \text{respectively}\text{.}\\\\\therefore \ \ \ \ \ 2x+2y=L\\\\\therefore \ \ \ \ \ y=\displaystyle \frac{L}{2}-x\\\\\ \ \ \ \ \ \ \text{Let the area of the rectangle be }A.\\\\\therefore \ \ \ \ \ A=xy=\displaystyle \frac{L}{2}x-{{x}^{2}}\\\\\therefore \ \ \ \ \ \displaystyle \frac{{dA}}{{dx}}=\displaystyle \frac{L}{2}-2x\\\\\therefore \ \ \ \ \ \displaystyle \frac{{dA}}{{dx}}=0\ \text{when}\ \displaystyle \frac{L}{2}-2x=0\\\\\therefore \ \ \ \ \,x=\displaystyle \frac{L}{4}\\\\\ \ \ \ \ \ \displaystyle \frac{{{{d}^{2}}A}}{{d{{x}^{2}}}}=-2<0\\\\\therefore \ \ \ \ A\ \text{is maximum when }x=\displaystyle \frac{L}{4}.\\\\\therefore \ \ \ \ \text{When }x=\displaystyle \frac{L}{4},\ y=\displaystyle \frac{L}{2}-\displaystyle \frac{L}{4}=\displaystyle \frac{L}{4}\\\\\therefore \ \ \ \ x=y\ \text{and this means that the rectangle is a square}\text{.}\end{array}
14.(b) \displaystyle OPRQ is a parallelogram and \displaystyle OP is produced to \displaystyle S such that \displaystyle \overrightarrow{{OS}}=3\overrightarrow{{OP}}. If \displaystyle X is a point on \displaystyle PR such that \displaystyle \overrightarrow{{PX}}=2\overrightarrow{{XR}}, show that the points \displaystyle Q, X and \displaystyle S are collinear.
(5 marks)
Show/Hide Solution
\displaystyle \begin{array}{l}\ \ \ \ \text{Let }\overrightarrow{{OP}}=\vec{a}\ \text{and}\ \overrightarrow{{OQ}}=\vec{b}\\\\\therefore \ \ \ \overrightarrow{{OS}}=3\vec{a}\ \text{and}\ \overrightarrow{{PS}}=2\vec{a}\\\\\ \ \ \ \text{Since}OPRQ\ \text{is a parallelogram,}\\\\\ \ \ \ \overrightarrow{{OQ}}=\ \overrightarrow{{PR}}=\vec{b}\ \text{and}\ \overrightarrow{{OP}}=\overrightarrow{{QR}}=\vec{a}\\\\\therefore \ \ \overrightarrow{{PX}}=\displaystyle \frac{2}{3}\vec{b}\ \text{and}\ \overrightarrow{{XR}}=\displaystyle \frac{1}{3}\vec{b}.\\\\\therefore \ \ \overrightarrow{{QX}}=\overrightarrow{{QR}}+\overrightarrow{{RX}}\\\\\ \ \ \ \ \ \ \ \ \ =\overrightarrow{{QR}}-\overrightarrow{{XR}}\\\\\ \ \ \ \ \ \ \ \ \ =\vec{a}-\displaystyle \frac{1}{3}\vec{b}\\\\\therefore \ \ \overrightarrow{{XS}}=\overrightarrow{{PS}}-\overrightarrow{{PX}}\\\\\ \ \ \ \ \ \ \ \ \ =2\vec{a}-\displaystyle \frac{2}{3}\vec{b}\\\\\ \ \ \ \ \ \ \ \ \ =2\left( {\vec{a}-\displaystyle \frac{1}{3}\vec{b}} \right)\\\\\therefore \ \ \overrightarrow{{XS}}=2\overrightarrow{{QX}}\\\\\therefore \ \ Q,X\ \text{and}\ S\ \text{are collinear}\text{.}\end{array}
ယခု sample question သည္ ေက်ာင္းသားတို႔၏ အေတြး ကို စစ္ေဆးေသာ ေမးခြန္း လံုး၀ မပါ၀င္သေလာက္ ျဖစ္ပါသည္။ ျပဌာန္းစာအုပ္ပါ Example ေမးခြန္း အမ်ားစု ႏွင့္ Exercise ကို တိုက္႐ိုက္ေမးထားေသာ ေမးခြန္းသာ ျဖစ္ပါသည္။
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!