Loading [MathJax]/jax/output/HTML-CSS/jax.js

Exercise (4.7) - Inverse Functions

  1. Find the formula for f1 and state the domain of f1 when the function f is given by

    (a) f(x)=2x3


    f(x)=2x3Let f1(x)=y then f(y)=x2y3=xy=x+32f1(x)=x+32

    (b) f(x)=1+3x


    f(x)=1+3xLet f1(x)=y then f(y)=x1+3y=xy=x13f1(x)=x13

    (c) f(x)=1x


    f(x)=1xLet f1(x)=y then f(y)=x1y=xy=1xf1(x)=1x

    (d) f(x)=x+92


    f(x)=x+92Let f1(x)=y then f(y)=xy+92=xy=2x9f1(x)=2x9

    (e) f(x)=13(4x5)


    f(x)=13(4x5)Let f1(x)=y then f(y)=x13(4y5)=xy=3x+54f1(x)=3x+54

    (f) f(x)=2x+5x7


    f(x)=2x+5x7Let f1(x)=y then f(y)=x2y+5y7=x2y+5=xy7xxy2y=7x5y(x2)=7x5y=7x5x2f1(x)=7x5x2

    (g) f(x)=3x2


    f(x)=3x2Let f1(x)=y then f(y)=x3y2=xy2=3xy=3x+2y=2x+3xf1(x)=2x+3x

    (h) f(x)=132x


  2. f(x)=132xLet f1(x)=y then f(y)=x132y=xy=132xf1(x)=132x

  3. A={xx0,xR} and g,h are functions from A to A defined by g(x)= 2x,h(x)=x2

    (a) Find the formula for the inverse functions g1,h1.

    (b) Evaluate g1(7),h1(5).


  4. A={xx0,xR}g(x)=2xh(x)=x2Let g1(x)=y then g(y)=x2y=xy=x2g1(x)=x2Let h1(x)=z then h(z)=xz2=xz=xh1(x)=xg1(7)=72h1(9)=9=3

  5. Function f is given by f(x)=2x5x3.

    (a) State the value of x for which f is not defined.

    (b) Find the value of x for which f(x)=0.

    (c) Find the inverse function f1 and state the domain of f1.


  6. (a)f(x)=2x5x3f(x) is not defined whenx3=0 or x=3(b)f(x)=02x5x3=02x5=0x=52(c)Let f1(x)=y then f(y)=x2y5y3=x2y5=xy3xxy2y=3x5y(x2)=3x5y=3x5x2,x2f1=3x5x2,x2Domain of f1={x| x2,xR}

  7. Function f is given by f(x)=x+ax2 and that f(7)=2, find

    (a) the value of a, and

    (b) f1(4).


  8. (a)f(x)=x+ax2f(7)=27+a72=2a=3(b)Let f1(4)=k then f(k)=4k+3k2=4k+3=4k+85k=5k=1

  9. The function f is given by f(x)=4x2.

    (a) Find the value of x for which f(x)=0.

    (b) Find the inverse function f1 and state the domain of f1.

    (c) If f1(k)=2, find the value of k.


  10. (a)f(x)=4x2f(x)=04x2=04x=24x=412x=12(b)Let f1(x)=y then f(x)=y4y2=x4y=x+2y=log4x+2f1(x)=log4x+2f1(x) is defined only when x+20,i.e.,x2Domain of f1={x| x2,xR}(c)f1(k)=2k=f(2)k=422=14

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post