- Find the formula for $f^{-1}$ and state the domain of $f^{-1}$ when the function $f$ is given by 
 (a) $f(x)=2 x-3$
 
 (b) $f(x)=1+3 x$
 
 (c) $f(x)=1-x$
 
 (d) $f(x)=\displaystyle\frac{x+9}{2}$
 
 (e) $f(x)=\displaystyle\frac{1}{3}(4 x-5)$
 
 (f) $f(x)=\displaystyle\frac{2 x+5}{x-7}$
 
 (g) $f(x)=\displaystyle\frac{3}{x-2}$
 
 (h) $f(x)=\displaystyle\frac{13}{2 x}$
-  $A=\{x \mid x \geq 0, x \in \mathbb{R}\}$ and $g, h$ are functions from $A$ to $A$ defined by $g(x)=$ $2 x, h(x)=x^{2}$
 (a) Find the formula for the inverse functions $g^{-1}, h^{-1}$.
 (b) Evaluate $g^{-1}(7), h^{-1}(5)$.
- Function $f$ is given by $f(x)=\displaystyle\frac{2 x-5}{x-3}$.
 (a) State the value of $x$ for which $f$ is not defined.
 (b) Find the value of $x$ for which $f(x)=0$.
 (c) Find the inverse function $f^{-1}$ and state the domain of $f^{-1}$.
- Function $f$ is given by $f(x)=\displaystyle\frac{x+a}{x-2}$ and that $f(7)=2$, find
 (a) the value of $a$, and
 (b) $f^{-1}(-4)$.
- The function $f$ is given by $f(x)=4^{x}-2$.
 (a) Find the value of $x$ for which $f(x)=0$.
 (b) Find the inverse function $f^{-1}$ and state the domain of $f^{-1}$.
 (c) If $f^{-1}(k)=2$, find the value of $k$.
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
 
