- Let y=5x3+7x2+6. Find dydx,d2ydx2,d3ydx3.
-
Find dydx and d2ydx2 for each of the following functions.
(a) y=xx−1
(b) y=x√x+2
(c) y=x+1x2
(d) y=(3x2−2x+1)2
(e) y=(3x+2)20
(f) y=x(2x−1)6
(g) y=x+1x−1
(h) y=3x2x+3
(i) y=3√x+2
- If f(x)=x3−2x2+3x+1, find f′(x) and f′′(x).
- If y=3x2+4x, prove that x2d2ydx2−2xdydx+2y=0.
- If y=2x2+3x, prove that x2d2ydx2+xdydx=y.
- If y=x2+2x+3, show that (dydx)2+(d2ydx2)3=4y.
- If y=x4−3x2, show that x2y′′+xy′=4y.
- If y=2x3−3x, show that x2y′′−xy′−3y=0.
- If y=x2+x+1, show that (dydx)2+d2ydx2=4y−1.
- Given that y=(2x−3)3, find the value of x when d2ydx2=0.
- Given that f(x)=px3+(1−3p)x2−4. When x=2,f′′(x)=−1. Find the value of p.
- The displacement of a particle in metres at time t seconds is modelled by the function f(t)=t2+2√t The acceleration of the particle in ms−2 is the second derivative of this function. Find an expression for the acceleration of the particle at time t seconds.
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!