Processing math: 100%

Calculus Exercise (6) : Higher Order Derivatives

  1. Let y=5x3+7x2+6. Find dydx,d2ydx2,d3ydx3.


  2. y=5x3+7x2+6.dydx=ddx(5x3+7x2+6)=15x2+14xd2ydx2=ddx(15x2+14x)=30x+14d3ydx3=ddx(30x+14)=30

  3. Find dydx and d2ydx2 for each of the following functions.
    (a) y=xx1
    (b) y=xx+2
    (c) y=x+1x2
    (d) y=(3x22x+1)2
    (e) y=(3x+2)20
    (f) y=x(2x1)6
    (g) y=x+1x1
    (h) y=3x2x+3
    (i) y=3x+2


  4.  (a) y=xx1dydx=(x1)ddx(x)xddx(x1)(x1)2=x1x(x1)2=1(x1)2d2ydx2=ddx(1(x1)2)=ddx[(x1)2]=2(x1)3 (b) y=xx+2dydx=xddxx+2+x+2ddx(x)=x2x+2+x+2=3x+42x+2d2ydx2=12(x+2ddx(3x+4)(3x+4)ddxx+2)=3x+23x+42x+22(x+2)=6x+123x44(x+2)32 (c) y=x+1x2dydx=x2ddx(x+1)(x+1)ddx(x2)x4=x22x(x+1)x4=x+2x3d2ydx2=x3ddx(x+2)(x+2)ddx(x3)x6=x3+3x2(x+2)x6=2(x+3)x4 (d) y=(3x22x+1)2dydx=2(3x22x+1)ddx(3x22x+1)=4(3x1)(3x22x+1)d2ydx2=4[(3x1)ddx(3x22x+1)+(3x22x+1)ddx(3x1)]=4(3x1)(6x2)+3(3x22x+1)=4(27x218x+5) (e) y=(3x+2)20dydx=20(3x+2)19ddx(3x+2)=60(3x+2)19d2ydx2=1140(3x+2)18ddx(3x+2)=3420(3x+2)18 (f) y=x(2x1)6dydx=xddx(2x1)6+(2x1)6ddx(x)=6x(2x1)5ddx(2x1)+(2x1)6=12x(2x1)5+(2x1)6=(2x1)5(14x1)d2ydx2=(2x1)5ddx(14x1)+(14x1)ddx(2x1)5=14(2x1)5+5(14x1)(2x1)4ddx(2x1)=14(2x1)5+10(14x1)(2x1)4=24(2x1)4(7x1) (g) y=x+1x1dydx=(x1)ddx(x+1)xddx(x1)(x1)2=(x1)(x+1)(x1)2=2(x1)2d2ydx2=ddx(2(x1)2)=ddx[2(x1)2]=4(x1)3 (h) y=3x2x+3dydx=(x+3)ddx(3x2)3x2ddx(x+3)(x+3)2=6x(x+3)3x2(x+3)2=3(x2+6x)(x+3)2d2ydx2=3((x+3)2ddx(x2+6x)(x2+6x)ddx(x+3)2(x+3)4)=3(2(x+3)32(x+3)(x2+6x)(x+3)4)=6(x+3)(x2+6x+9x26x)(x+3)3 (i) y=3x+2dydx=ddx(3(x+2)12)=32(x+2)32d2ydx2=32ddx(x+2)32=94(x+2)52

  5. If f(x)=x32x2+3x+1, find f(x) and f(x).


  6. f(x)=x32x2+3x+1f(x)=3x24x+3f(x)=6x4

  7. If y=3x2+4x, prove that x2d2ydx22xdydx+2y=0.


  8. y= 3x2+4xdydx= 6x+4d2ydx2= 6x2d2ydx22xdydx+2y= x2(6)2x(6x+4)+2(3x2+4x)= 6x212x28x+6x2+8x= 0

  9. If y=2x2+3x, prove that x2d2ydx2+xdydx=y.


  10. y=2x2+3xdydx=x(4x)(2x2+3)x2=2x23..2d2ydx2=x2(4x)2x(2x23)x4=6x3x2d2ydx2+xdydx=x2(6x3)+x(2x23x2)=6+2x23x=2x2+3x=y

  11. If y=x2+2x+3, show that (dydx)2+(d2ydx2)3=4y.


  12. y= x2+2x+3dydx= 2x+2d2ydx2= 2(dydx)2+(d2ydx2)3= (2x+2)2+23= 4x2+8x+12= 4(x2+2x+3)= 4y

  13. If y=x43x2, show that x2y+xy=4y.


  14. y=x43x2y=x2(4x3)2x(x43)x4=2(x4+3)x3y=2[x3(4x3)(3x2)(x4+3)x3]x2y+xy=x22(x49)r4+x2(x4+3)x3=2(x49)x43)=4y

  15. If y=2x33x, show that x2yxy3y=0.


  16. y=2x33xy=6x2+3x2y=12x6x3x2yxy3y=x2(12x6x3)x(6x2+3x2)3(2x33x)=12x36x6x33x6x3+3x=0

  17. If y=x2+x+1, show that (dydx)2+d2ydx2=4y1.


  18. y=x2+x+1dydx=2x+1d2ydx2=2(dydx)2+d2ydx2=(2x+1)2+2=4x2+4x+3=4x2+4x+41 (dydx)2+d2ydx2=4(x2+x+1)1=4y1

  19. Given that y=(2x3)3, find the value of x when d2ydx2=0.


  20. y=(2x3)3dydx=3(2x3)2ddx(2x3)=3(2x3)2(2)=6(2x3)2d2ydx2=12(2x3)ddx(2x3)=12(2x3)(2)=24(2x3)d2ydx2=024(2x3)=0x=32

  21. Given that f(x)=px3+(13p)x24. When x=2,f(x)=1. Find the value of p.


  22. f(x)=px3+(13p)x24f(x)=3px2+2(13p)xf(x)=6px+2(13p) When x=2f(x)=1f(2)=16p(2)+2(13p)=112p+26p=118p=3p=16

  23. The displacement of a particle in metres at time t seconds is modelled by the function f(t)=t2+2t The acceleration of the particle in ms2 is the second derivative of this function. Find an expression for the acceleration of the particle at time t seconds.


  24. f(t)=t2+2tf(t)=tddt(t2+2)(t2+2)ddt(t)t=t(2t)(t2+2)2tt=4t2t222t3/2=3t222t3/2 f(t)=32t1/2t3/2f(t)=34t1/2+32t5/2=34t1/2+32t5/2=34(1t1/2+2t5/2)=3(t2+2)4t5/2
    The acceleration of the particle at time t seconds is 3(t2+2)4t5/2.

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post