Processing math: 100%

Oct-Nov-21-p2-CIE-4037-22 : Solution

2021 (Oct-Nov) CIE (4037-Additional Mathematics), Paper 2/22 ၏ Question နှင့် Solution များ ဖြစ်ပါသည်။ Question Paper ကို ဒီနေရာမှာ Download ယူနိုင်ပါသည်။

  1. (a) On the axes, draw the graphs of y=5+|3x2| and y=11x. [4]

    (b) Using the graphs, or otherwise, solve the inequality 11x<5+|3x2|. [2]



  2. y=5+|3x2|y=3|x23|+5  vertex =(23,5) When x=0,y=7 y-intercept =(0,7)y=11x When x=0,y=11 y-intercept =(0,11) When y=0,x=11 x-intercept =(11,0)
    According to the graph, the solution set to satisfy the inequality 1x<5+|3x2| is {xx<2 or x>2}.

  3. (a) Expand (23x)4, evaluating all of the coefficients. [4]
    (b) The sum of the first three terms in ascending powers of x in the expansion of (23x)4(1+ax) is 32x+b+cx, where a,b and c are integers. Find the values of each of a,b and c. [4]



  4. (23x)4=24+4(23)(3x)+6(22)(3x)2+4(2)(3x)3+(3x)4=1696x+216x224x3+81x4
    (23x)(1+ax)=32x+b+cx+(1696x+216x224x+81x4)(1+ax)=32x+b+cx+16+16ax96x96a+216ax+=32x+b+cx+16ax+(1696a)+(216a96)x+=32x+b+cx+
     16a=32,a=2b=1696a=176c=216a96=336

  5. (a) Show that 1secx1+1secx+1=2cotxcosecx. [4]
    (b) Hence solve the equation 1secx1+1secx+1=3secx for 0<x<360. [4]



  6. 1secx1+1secx+1= secx+1+secx1(secx1)(secx+1)= 2secxsec2x1= 2secxtan2x= 21cosx1tanx1tanx= 1cosxcosxsinxcotx= 2sinxcotx= 2cotxcosecx
    1secx1+1secx+1=3secx,0<x<3602cotxcosecx=3secx2cosxsinx1sinx=3cosx2cos2x=3sin2xtan2x=23tanx=±23x=39.2 or x=140.8 or x=219.2 or x=320.8

  7. (a) Find the x-coordinates of the stationary points on the curve y=3lnx+x27x, where x>0. [5]
    (b) Determine the nature of each of these stationary points. [3]



  8. (a) y=3lnx+x27xdydx=3x+2x7dydx=0 when, 3x+2x7=02x27x+3=0(2x1)(x3)=0x=12 or x=3
    Hence, the curve has stationary points where x=12 or x=3.
    (b) d2ydx2=3x2+2 When x=12,d2ydx2=314+2=10<0 When x=3,d2ydx2=39+2=53>0
    The curve is maximum where x=12 and is minimum where x=3.

  9. (a) Solve the following simultaneous equations.
    ex+ey=52ex3ey=8

    [5]
    (b) Solve the equation e(2t1)=5e(5t3). [4]



  10.  (a) ex+ey=5ey=5ex2ex3ey=8 2ex3(5ex)=82ex15+3ex=85ex=23ex=235x=ln(235)=1.53ey=5235=25y=ln(25)=0.916 (b) e(2t1)e2t1=5e(5t3)e5t3=51e3t2=5e3t2=153t2=ln15t=13(2+ln15)=0.13

  11. DO NOT USE A CALCULATOR IN THIS QUESTION.

    All lengths in this question are in centimetres.
    You may use the following trigonometrical ratios.
    sin60=32cos60=12tan60=3
    The diagram shows triangle ABC with AC=62,AB=6+2 and angle CAB=60.

    (a) Find the exact length of BC. [3]
    (b) Show that sinACB=6+24. [2]
    (c) Show that the perpendicular distance from A to the line BC is 1. [2]



  12.  (a)  By cosine Rule,
    BC2=AB2+AC22(AB)(AC)cosA=(6+2)2+(62)22(6+2)(62)cos60=6+212+2+6212+22(62)12=12BC=12BC=23
     (b)  By Sine Rule,
    sin(ACB)AB=sin(BAC)BCsin(ACB)=ABBCsin(BAC)=6+223×sin60=6+223×32=6+24
     (c)  Let h be the perpendicular distance from A to BC.
     h=ACsin(ACB)=(62)6+24=624=1

  13. It is given that d2ydx2=e2x+1(x+1)2 for x>1.
    (a) Find an expression for dydx given that dydx=2 when x=0. [3]
    (b) Find an expression for y given that y=4 when x=0. [3]



  14. d2ydx2=e2x+1(x+1)2,x>1.dydx=(e2x+1(x+1)2)dx=12e2xd(2x)+(x+1)2dx=12e2x1x+1+c1dydx=2 when x=0121+e1=2c1=52 dydx=12e2x1x+1+52y=[12e2x1x+1+52]dx=12e2xdx1x+1dx+52dx=14e2xln(x+1)+5x2+c2y=4 when x=0 14+c2=4 c2=154 y=14e2xln(x+1)+5x2+154

  15. Variables x and y are such that when y is plotted against log2(x+1), where x>1, a straight line is obtained which passes through (2,10.4) and (4,15.4).
    (a) Find y in terms of log2(x+1). [4]
    (b) Find the value of y when x=15. [1]
    (c) Find the value of x when y=25. [3]



  16.  (a)  The straight line passes through the points (2,10.4) and (4,15.4).
     gradient =15410442=52
      Equation of straight line is
    y10.4=52(log2(x+1)2)y=52log2(x+1)+54 (b)  When x=15,y=52log2(16)+5.4=52(4)+5.4=15.4y=237.16 (c)  When y=25,25=52log2(x+1)+5.4log(x+1)=0.16x+1=20.16x=20.161=0.105

  17. (a) Find the equation of the normal to the curve y=x3+x24x+6 at the point (1,4). [5]
    (b) DO NOT USE A CALCULATOR IN THIS QUESTION.
    Find the exact x-coordinate of each of the two points where the normal cuts the curve again.
    [5]



  18.  (a)  Curve :y=x3+x24x+6dydx=3x2+2x4dydx|(1,4)=3+24=1  gradient of normal =1
    The equation of normal line at (1,4) is
    y4=1(x1)y=5x
     (b)  At the point of intersection of normal and curve,
    x3+x24x+6=5xx3+x23x+1=0
     Let f(x)=x3+x23x+1f(1)=1+13+1=0
    (x1) is a factor of f(x).
     Let f(x)=(x1)(x2+kx1) x3+x23x+1=(x1)(x2+kx1)
     When x=2,8+46+1=(21)(4+2k1)7=3+2kk=2
     (x1)(x2+2x1)=0(x1)(x2+2x+12)=0(x1)((x+1)22)=0x1=0 or (x+1)22=0x=1 or x=1±2
    The normal cuts the curve again where x=12 and x=1+2

  19. (a) The first three terms of an arithmetic progression are x,5x4 and 8x+2. Find x and the common difference. [4]
    (b) The first three terms of a geometric progression are y,5y4 and 8y+2.
    (i)) Find the two possible values of y. [4]
    (ii)) For each of these values of y, find the corresponding value of the common ratio. [2]



  20.  (a) x,5x4 and 8x+2 ane in an A.P.
    5x4x=8x+25x+44x4=3x+6x=10
    Let the common difference be d.
    d=5x4x=4x4=4(x1)=4(101)=36
     (b) y,5y4 and 8y+2 are in G.P.
     (i) 5y4y=8y+25y425y240y+16=8y2+2y17y242y+16=0(17y8)(y2)=0y=817 or y=2
     (ii)  Let the common ratio be r,
     When y=817,r=5y4y=5(817)4817=72 When y=2,r=5y4y=1042=3

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post