Problem Study (Geometry applying Trigonometry and Calculus)

(a)    Let be a triangle with right angle and hypotenuse .  
        (See the figure.) 
        If the inscribed circle touches the hypotenuse at D, 
        show that .
(b)   If  , express the radius of the inscribed circle in terms  of and
(c)   If  is fixed and  varies, find the maximum value of .  
    Let   be the centre of the circle and and be points of           
    tangency of and respectively.       
   Draw and       
   Since and , is a square.
      Let .     
(b)   Draw . Since is incentre, bisects .       
        In right ,         
       In right , By Pythagoras Theorem,
(c)   Since is fixed and  varies, is a function of and the rate of 
       change of with respect to is
      has stationary value when  .
        and .  
      When ,
      will be maximum value when .
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post