Given that x5 + ax3 + bx2 − 3 = (x2 − 1) Q(x) − x − 2 where Q(x) is a polynomial. State the degree of Q(x) and find the value of a and b. Find also the remainder when Q(x) is divided by x + 2.
Solution
∴−a+b=3 --------------(1)
∴a+b=−1 --------------(2)
∴x5−2x3+x2−3=(x2−1)Q(x)−x−2
∴x5−2x3+x2+x−1=(x2−1)Q(x)
=−32+16+4−2−13
=−153
Solution
Since x5+ax3+bx2−3 is divided by (x2 − 1), Q(x) is a polynomial of degree 3.
x5+ax3+bx2−3=(x2−1)Q(x)−x−2
x5+ax3+bx2−3=(x−1)(x+1)Q(x)−x−2
When x = − 1, −1−a+b−3=(−1−1)(−1+1)Q(x)−(−1)−2
∴−a+b=3 --------------(1)
When x = 1, 1+a+b−3=(1−1)(1+1)Q(x)−1−2
∴a+b=−1 --------------(2)
(2)+(1)⇒2b=2⇒b=1
(2)−(1)⇒2a=−4⇒a=−2
∴x5−2x3+x2−3=(x2−1)Q(x)−x−2
∴x5−2x3+x2+x−1=(x2−1)Q(x)
∴Q(x)=x5−2x3+x2+x−1x2−1
When Q(x) is divided by x + 2,
the remainder =Q(−2)
=(−2)5−2(−2)3+(−2)2+(−2)−1(−2)2−1
=−32+16+4−2−13
=−153
=−5
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!