Processing math: 100%

Problem Study: The Remainder Theorem and Division Algorithm

Given that x5 + ax3 + bx2 − 3 = (x2 − 1) Q(x) x − 2 where Q(x) is a polynomial. State the degree of Q(x) and find the value of a and b. Find also the remainder when Q(x) is divided by x + 2. 

Solution

Since x5+ax3+bx23 is divided by (x2 − 1), Q(x) is a polynomial of degree 3.  

x5+ax3+bx23=(x21)Q(x)x2

x5+ax3+bx23=(x1)(x+1)Q(x)x2

 When x = − 1, 1a+b3=(11)(1+1)Q(x)(1)2

a+b=3      --------------(1)

When x = 1, 1+a+b3=(11)(1+1)Q(x)12

a+b=1    --------------(2)

(2)+(1)2b=2b=1

(2)(1)2a=4a=2 

x52x3+x23=(x21)Q(x)x2

x52x3+x2+x1=(x21)Q(x) 

Q(x)=x52x3+x2+x1x21

When Q(x) is divided by x + 2, 

the remainder =Q(2) 

                       =(2)52(2)3+(2)2+(2)1(2)21

                       =32+16+4213

                       =153

                       =5
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم