အကယ္၍ A=(abcd) ၊ I=(1001) နဲ႔ xI−A ဟာ singular matrix ျဖစ္မယ္ဆိုရင္
xI−A=x(1001)−(abcd) =(x−abcx−d)
ဒါဆိုရင္ xI−A ရဲ့ determinant ကို ရွာၾကည့္မယ္။
det
ဒီေနရာမွာ \displaystyle a+d ကို matrix \displaystyle A ရဲ့ trace လို႔ ေခၚၿပီး \displaystyle \operatorname{tr}(A) လို႔ သတ္မွတ္ပါမယ္။ \displaystyle ad-bc ကေတာ့ matrix \displaystyle A ရဲ့ determinant ျဖစ္ၿပီး \displaystyle \det (A) လို႔ သတ္မွတ္ပါမယ္။
\displaystyle xI-A ဟာ singular matrix ျဖစ္လို႔ \displaystyle \det (xI-A)=0 ျဖစ္မွာေပါ့။ ဒါဆိုရင္
\displaystyle \begin{array}{l}\ \ \ \ \ \det (xI-A)=0\\\\\therefore {{x}^{2}}-(a+d)x+ad-bc=0\\\\\therefore {{x}^{2}}-\operatorname{tr}(A)x+\det (A)=0\end{array}
အျမင္ရွင္းလင္း လြယ္ကူေအာင္ \displaystyle \operatorname{tr}(A)=a+d ကို p လို႔ထားၿပီး \displaystyle \det (A)=ad-bc ကိုေတာ့ q လို႔ထားလိုက္မယ္။
ဒါ့ေၾကာင့္ \displaystyle {{x}^{2}}-px+q=0 ဆိုတဲ့ polynomial equation တစ္ခု ရပါတယ္။ ၎ equation ကို characteristic equation လို႔ ေခၚပါတယ္။
Chareateristic polynomial ကို \displaystyle f(x) လို႔ထားလိုက္မယ္ဆိုရင္ characteristic equation က \displaystyle f(x)=0 ေပါ့။ \displaystyle x ေနရာမွာ matrix \displaystyle A ကို အစားသြင္းလိုက္ရင္
\displaystyle f(A)=0
\displaystyle \therefore {{A}^{2}}-pA+qI=O
real number မွာေတာ့ အေျမႇာက္ထပ္တူရကိန္းက 1 ျဖစ္ေသာ္လည္း matrix မွာေတာ့ အေျမႇာက္ ထပ္တူရ matrix က identity matrix (I) ျဖစ္ တယ္ဆိုတာ သတိျပဳဖို႔ လိုပါတယ္။
ဒါ့ေၾကာင့္ မည္သည့္ square matrix မဆို ၎ရဲ့ characteristic equation ကို ေျပလည္ေစပါတယ္။
\displaystyle {{{A}^{2}}-\operatorname{tr}(A)A+\det (A)I=O} |
For 2× 2 matrix \displaystyle A=\left( {\begin{array}{*{20}{c}} a & b \\ c & d \end{array}} \right),
\displaystyle {{A}^{2}}-(a+d)A+(ad-bc)I=O |
Proof : If \displaystyle A=\left( {\begin{array}{*{20}{c}} a & b \\ c & d \end{array}} \right), then
\displaystyle \begin{array}{l}\ \ \ {{A}^{2}}-(a+d)A+(ad-bc)I\\\\=\left( {\begin{array}{*{20}{c}} a & b \\ c & d \end{array}} \right)\left( {\begin{array}{*{20}{c}} a & b \\ c & d \end{array}} \right)-(a+d)\left( {\begin{array}{*{20}{c}} a & b \\ c & d \end{array}} \right)+(ad-bc)\left( {\begin{array}{*{20}{c}} 1 & 0 \\ 0 & 1 \end{array}} \right)\\\\=\left( {\begin{array}{*{20}{c}} {{{a}^{2}}+bc} & {ab+bd} \\ {ac+cd} & {bc+{{d}^{2}}} \end{array}} \right)-\left( {\begin{array}{*{20}{c}} {{{a}^{2}}+ad} & {ab+bd} \\ {ac+cd} & {ad+{{d}^{2}}} \end{array}} \right)+\left( {\begin{array}{*{20}{c}} {ad-bc} & 0 \\ 0 & {ad-bc} \end{array}} \right)\\\\=\left( {\begin{array}{*{20}{c}} 0 & 0 \\ 0 & 0 \end{array}} \right)\\\\=O\end{array}
Extension of Characteristic Equation
\displaystyle \ \ \ \ {{A}^{2}}-pA+qI=O
ႏွစ္ဘက္လံုးကို \displaystyle {{A}^{{-1}}} နဲ႔ ေျမႇာက္လိုက္ရင္
\displaystyle \begin{array}{l}\ \ \ {{A}^{2}}{{A}^{{-1}}}-pA{{A}^{{-1}}}+qI{{A}^{{-1}}}=O\\\\\ \ \ AA{{A}^{{-1}}}-pA{{A}^{{-1}}}+qI{{A}^{{-1}}}=O\\\\\ \ \ AI-pI+q{{A}^{{-1}}}=O\\\\\therefore A-pI+q{{A}^{{-1}}}=O\\\\\therefore A-(a+d)I+(ad-bc){{A}^{{-1}}}=O\end{array}
အကယ္၍ \displaystyle A=\left( {\begin{array}{*{20}{c}} a & b \\ c & d \end{array}} \right) ျဖစ္ခဲ့ရင္ \displaystyle {\operatorname{tr}(A)=p=a+d} and \displaystyle \det (A)=q=ad-bc ဆိုတာ ေျပာခဲ့ၿပီးပါၿပီ။
\displaystyle \begin{array}{l}\ \ \ {{A}^{2}}=\left( {\begin{array}{*{20}{c}} a & b \\ c & d \end{array}} \right)\left( {\begin{array}{*{20}{c}} a & b \\ c & d \end{array}} \right)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -----(1)\\\\\ \ \ \ \ \ \ \ \ =\left( {\begin{array}{*{20}{c}} {{{a}^{2}}+bc} & {ab+bd} \\ {ac+cd} & {bc+{{d}^{2}}} \end{array}} \right)\\\\\ \ {{A}^{{-1}}}=\frac{1}{{ad-bc}}\left( {\begin{array}{*{20}{c}} d & {-b} \\ {-c} & a \end{array}} \right)\\\\\ \ pq{{A}^{{-1}}}=(a+d)(ad-bc)\frac{1}{{ad-bc}}\left( {\begin{array}{*{20}{c}} d & {-b} \\ {-c} & a \end{array}} \right)\ \ \\\\\ \ \ \ \ \ \ \ \ \ \ =(a+d)\left( {\begin{array}{*{20}{c}} d & {-b} \\ {-c} & a \end{array}} \right)\\\\\ \ \ \ \ \ \ \ \ \ \ =\left( {\begin{array}{*{20}{c}} {ad+{{d}^{2}}} & {-ab-bd} \\ {-ac-cd} & {{{a}^{2}}+ad} \end{array}} \right)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -----(2)\\\\\ \ \ (q-{{p}^{2}})I=\left[ {(ad-bc)-{{{(a+d)}}^{2}}} \right]I\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\left[ {-bc-ad-{{a}^{2}}-{{d}^{2}}} \right]\left( {\begin{array}{*{20}{c}} 1 & 0 \\ 0 & 1 \end{array}} \right)\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\left( {\begin{array}{*{20}{c}} {-bc-ad-{{a}^{2}}-{{d}^{2}}} & 0 \\ 0 & {-bc-ad-{{a}^{2}}-{{d}^{2}}} \end{array}} \right)--(3)\end{array}
ညီမွ်ျခင္း (1), (2), (3) ကို ေပါင္းလိုက္ရင္
\displaystyle \begin{array}{l}\ \ \ {{A}^{2}}+pq{{A}^{{-1}}}+(q-{{p}^{2}})I\\\\=\left( {\begin{array}{*{20}{c}} {{{a}^{2}}+bc} & {ab+bd} \\ {ac+cd} & {bc+{{d}^{2}}} \end{array}} \right)+\left( {\begin{array}{*{20}{c}} {ad+{{d}^{2}}} & {-ab-bd} \\ {-ac-cd} & {{{a}^{2}}+ad} \end{array}} \right)+\left( {\begin{array}{*{20}{c}} {-bc-ad-{{a}^{2}}-{{d}^{2}}} & 0 \\ 0 & {-bc-ad-{{a}^{2}}-{{d}^{2}}} \end{array}} \right)\\\\=\left( {\begin{array}{*{20}{c}} 0 & 0 \\ 0 & 0 \end{array}} \right)\\\\=O\end{array}
\displaystyle \begin{array}{l}\therefore {{A}^{2}}+pq{{A}^{{-1}}}+(q-{{p}^{2}})I=O\\\\\therefore {{A}^{2}}+(a+d)(ad-bc){{A}^{{-1}}}+\left[ {(ad-bc)-{{{(a+d)}}^{2}}} \right]I=O\end{array}
အားလံုးျပန္ခ်ဳပ္လိုက္ရင္ \displaystyle A=\left( {\begin{array}{*{20}{c}} a & b \\ c & d \end{array}} \right)\ ျဖစ္ခဲ့ရင္
\displaystyle \begin{array}{l}(1){{A}^{2}}-(a+d)A+(ad-bc)I=O\\\\(2){A}-(a+d)I+(ad-bc){{A}^{{-1}}}=O\\\\(3){{A}^{2}}+(a+d)(ad-bc){{A}^{{-1}}}+\left[ {(ad-bc)-{{{(a+d)}}^{2}}} \right]I=O\end{array} |
Example : If \displaystyle A=\left( {\begin{array}{*{20}{c}} {-2} & 3 \\ {-3} & 4 \end{array}} \right)\ then
\displaystyle \begin{array}{l}(1)\ \ {{A}^{2}}-(-2+4)A+(-8+9)I=O\\\\\Rightarrow {{A}^{2}}-2A+I=O\\\\(2){A}-(-2+4)I+(-8+9){{A}^{{-1}}}=O\\\\\Rightarrow {A}+{{A}^{{-1}}}-2I=O\\\\(3){{A}^{2}}+(-2+4)(-8+9){{A}^{{-1}}}+\left[ {(-8+9)-{{{(-2+4)}}^{2}}} \right]I=O\\\\\Rightarrow {{A}^{2}}+2{{A}^{{-1}}}-3I=O\end{array}.
ေမးခြန္းျပန္လုပ္ေသာ္
\displaystyle \begin{array}{l}\text{If}\ A=\left( {\begin{array}{*{20}{c}} {-2} & 3 \\ {-3} & 4 \end{array}} \right)\ \ \text{show that}\\\begin{array}{*{20}{l}} {(1){{A}^{2}}-2A+I=O} \\ {(2)A+{{A}^{{-1}}}-2I=O} \\ {(3){{A}^{2}}+2{{A}^{{-1}}}-3I=O} \end{array}\\\text{where}\ I\ \text{is a unit matrix of order 2}\text{.}\end{array}
ဆရာႀကီး Dr. Shwe Kyaw ပို႔ခ်ခဲ့ေသာ post ကို မွီျငမ္း၍ ျပန္လည္ တင္ျပပါသည္။
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!