If a and b are positive, asinθ±bcosθ can be written in the form Rsin(θ±α), acosθ±bsinθ can be written in the form Rsin(θ∓α), where R=√a2+b2,Rcosα=a,Rsinα=b and tanα=ba with 0∘<α<90∘. |
Example (1) Solve the equation 8sinθ+6cosθ=5 for 0∘≤θ≤360∘.
Solution
8sinθ+6cosθ=5
Let Rcosα=8 and Rsinα=6.
∴R=√82+62=√100=10 and tanα=68⇒α=36∘52′
Since 8sinθ+6cosθ=Rsin(θ+α),
Rsin(θ+α)=5⇒10sin(θ+36∘52′)=5⇒sin(θ+36∘52′)=12
∴θ+36∘52′=30∘ (1st quadrant) or
θ+36∘52′=150∘(2nd quadrant) or
θ+36∘52′=390∘(1st quadrant)
∴θ=−6∘52′ or θ=113∘8′ or θ=353∘8′
Since 0∘≤θ≤360∘, θ=−6∘52′ is impossible.
∴θ=113∘8′ or θ=353∘8′.
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!