If the fumction f(x) and g(x) intersect at x1=a and x2=b, then the bounded area between f(x) and g(x) is
∫ba[f(x)−g(x)] dx |
Where f(x) is the curve of upper boundry and g(x) is the curve of lower boundry.
ဆရာႀကီး ေဒါက္တာ ေရႊေက်ာ္ ၏ Drill For Exam Blog မွ Area under curve ပုစာၦမ်ား ျဖစ္ပါသည္။
Problem (1)
The diagram shows part of the curve y=9x2−x3, which meets the x-axis at the origin O and at the point A. The line y−2x+18=0 passes through A and meets the y-axis at the point B.
(i) Show that, for x≥0,9x2−x3≤108.
(ii) Find the area of the shaded region bounded by the curve, the line AB and the y-axis.
Show/Hide Solution
Line : y−2x+18⇒y=2x−18 Curve : y=9x2−x3
dydx=18x−3x2=3x(6−x)
dydx=0 when 3x(6−x)=0
∴ x=0 or x=6
∴ When x=0,y=0
∴ When x=6,
y=9(62)−(6)3=108
d2ydx2=−6x
∴ When x=6,d2ydx2=−36<0
∴ y=108 is a maximum value.∴ For x≥0, y≤0. According to the diagram, the line and curve intersect when y=0.∴ 2x−18=0⇒x=9. Let the curve of upper boundry be y1 and that of the lower boundry be y2, and let the area of the shaded region be A.∴ y1=9x2−x3, y2=2x−18 and
A=∫90(y1−y2) dx
=∫90(9x2−x3−2x+18) dx
=93x3−x44−2x22+18x]90
=3x3−x44−x2+18x]90
=3(9)3−(9)44−(9)2+18(9)
=627.75
dydx=18x−3x2=3x(6−x)
dydx=0 when 3x(6−x)=0
∴ x=0 or x=6
∴ When x=0,y=0
∴ When x=6,
y=9(62)−(6)3=108
d2ydx2=−6x
∴ When x=6,d2ydx2=−36<0
∴ y=108 is a maximum value.∴ For x≥0, y≤0. According to the diagram, the line and curve intersect when y=0.∴ 2x−18=0⇒x=9. Let the curve of upper boundry be y1 and that of the lower boundry be y2, and let the area of the shaded region be A.∴ y1=9x2−x3, y2=2x−18 and
A=∫90(y1−y2) dx
=∫90(9x2−x3−2x+18) dx
=93x3−x44−2x22+18x]90
=3x3−x44−x2+18x]90
=3(9)3−(9)44−(9)2+18(9)
=627.75
Problem (2)
The diagram shows part of the curve y=2sin3x. The normal to the curve y=2sin3x at the point where x=π9 meets the y-axis at the point P.
(i) Find the coordinates of P.
(ii) Find the area of the shaded region bounded by the curve, the normal and the y-axis.
Show/Hide Solution
Curve : y=2sin3x,
When x=π9,
y=2sin3(π9)
y=2sin3(π9)
=√3
dydx=6cos3x
dydx|x=π9=6cos3(π9)=3
dydx|x=π9=6cos3(π9)=3
y=√3−13(x−π9)
y=√3+π27−x3
When the normal cuts the y-axis, x=0.
∴ y=√3+π27
∴ P=(0,√3+π27)=(0,1.85)
Let the area of the shaded region be A.
∴A=(√3+π27)x−x26+23cos3x]π90
∴A=(√3+π27)π9−π2486+23cos3(π9)−23cos(0)
∴A=√3π9+π2243−π2486+13−23=2.912
When x=π9,
y=2sin3(π9)
y=2sin3(π9)
=√3
dydx=6cos3x
dydx|x=π9=6cos3(π9)=3
dydx|x=π9=6cos3(π9)=3
y=√3−13(x−π9)
y=√3+π27−x3
When the normal cuts the y-axis, x=0.
∴ y=√3+π27
∴ P=(0,√3+π27)=(0,1.85)
Let the area of the shaded region be A.
∴A=(√3+π27)x−x26+23cos3x]π90
∴A=(√3+π27)π9−π2486+23cos3(π9)−23cos(0)
∴A=√3π9+π2243−π2486+13−23=2.912
Problem (3)
The diagram shows part of the curve y=sin12x. The tangent to the curve at the point P(3π2,√22) cuts the x-axis at the point Q. (i) Find the coordinates of Q. (ii) Find the area of the shaded region bounded by the curve, the tangent and the x-axis.
Show/Hide Solution
y=sin12x
y=0⇒sin12x=0
∴ 12x=0 or 12x=π (for first half cycle)
∴ x=0 or x=2π
dydx=12cos12x
At P(3π2,√22),dydx=12cos3π4=−√24
∴ Equation of tangent at P is
y=√22−√24(x−3π2)
∴ y=√22+3√2π8−√24x
When the tangent cuts the x-axis, y=0.
∴ √22+3√2π8−√24x=0
∴ x=2+3π2
∴ Q=(2+3π2,0)=(6.71,0)
Area of ΔPQR=12⋅PQ⋅PR
=12(2)(√22)
=√22
Area of yellow region=∫2π3π2(sin12x)dx
=−2cos12x]2π3π2
=−2(cosπ−cos3π4)
=−2(−1+√22)
=2−√2
Let the required area be A.
∴ A=Area of ΔPQR−Area of yellow region
∴ A=√22−2+√2=3√22−2
y=0⇒sin12x=0
∴ 12x=0 or 12x=π (for first half cycle)
∴ x=0 or x=2π
dydx=12cos12x
At P(3π2,√22),dydx=12cos3π4=−√24
∴ Equation of tangent at P is
y=√22−√24(x−3π2)
∴ y=√22+3√2π8−√24x
When the tangent cuts the x-axis, y=0.
∴ √22+3√2π8−√24x=0
∴ x=2+3π2
∴ Q=(2+3π2,0)=(6.71,0)
Area of ΔPQR=12⋅PQ⋅PR
=12(2)(√22)
=√22
Area of yellow region=∫2π3π2(sin12x)dx
=−2cos12x]2π3π2
=−2(cosπ−cos3π4)
=−2(−1+√22)
=2−√2
Let the required area be A.
∴ A=Area of ΔPQR−Area of yellow region
∴ A=√22−2+√2=3√22−2
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!