Loading [MathJax]/jax/output/HTML-CSS/jax.js

Area between Curves (IGCSE O LEVEL) - Problems and Solutions


If the fumction f(x) and g(x) intersect at x1=a and x2=b, then the bounded area between f(x) and g(x) is

ba[f(x)g(x)] dx 

Where f(x) is the curve of upper boundry and g(x) is the curve of lower boundry.

ဆရာႀကီး ေဒါက္တာ ေရႊေက်ာ္Drill For Exam Blog မွ Area under curve ပုစာၦမ်ား ျဖစ္ပါသည္။

Problem (1)
The diagram shows part of the curve y=9x2x3, which meets the x-axis at the origin O and at the point A. The line y2x+18=0 passes through A and meets the y-axis at the point B.

(i) Show that, for x0,9x2x3108.

(ii) Find the area of the shaded region bounded by the curve, the line AB and the y-axis.

Show/Hide Solution
    Line : y2x+18y=2x18    Curve : y=9x2x3

    dydx=18x3x2=3x(6x)

    dydx=0 when 3x(6x)=0

  x=0 or x=6

  When x=0,y=0

  When x=6, 

    y=9(62)(6)3=108

    d2ydx2=6x

  When x=6,d2ydx2=36<0

  y=108 is a maximum value.  For x0, y0.    According to the diagram,     the line and curve intersect when y=0.  2x18=0x=9.    Let the curve of upper boundry be y1 and     that of the lower boundry be y2, and     let the area of the shaded region be A.  y1=9x2x3, y2=2x18 and

   A=90(y1y2) dx

       =90(9x2x32x+18) dx

       =93x3x442x22+18x]90

       =3x3x44x2+18x]90

       =3(9)3(9)44(9)2+18(9)

       =627.75


Problem (2)

The diagram shows part of the curve y=2sin3x. The normal to the curve y=2sin3x at the point where x=π9 meets the y-axis at the point P.

(i) Find the coordinates of P.

(ii) Find the area of the shaded region bounded by the curve, the normal and the y-axis.

Show/Hide Solution
   Curve : y=2sin3x,

   When x=π9,

   y=2sin3(π9)

   y=2sin3(π9)

     =3

   dydx=6cos3x

   dydx|x=π9=6cos3(π9)=3

   dydx|x=π9=6cos3(π9)=3

   y=313(xπ9)

   y=3+π27x3

   When the normal cuts the y-axis, x=0.

 y=3+π27

 P=(0,3+π27)=(0,1.85)

   Let the area of the shaded region be A.

A=(3+π27)xx26+23cos3x]π90

A=(3+π27)π9π2486+23cos3(π9)23cos(0)

A=3π9+π2243π2486+1323=2.912


 Problem (3)


The diagram shows part of the curve y=sin12x. The tangent to the curve at the point P(3π2,22) cuts the x-axis at the point Q. (i) Find the coordinates of Q. (ii) Find the area of the shaded region bounded by the curve, the tangent and the x-axis.

Show/Hide Solution
    y=sin12x

    y=0sin12x=0

  12x=0 or 12x=π  (for first half cycle)

  x=0 or x=2π

    dydx=12cos12x

    At P(3π2,22),dydx=12cos3π4=24

  Equation of tangent at P is

    y=2224(x3π2)

  y=22+32π824x

    When the tangent cuts the x-axis, y=0.

  22+32π824x=0

  x=2+3π2

  Q=(2+3π2,0)=(6.71,0)

    Area of ΔPQR=12PQPR

                           =12(2)(22)

                           =22

    Area of yellow region=2π3π2(sin12x)dx

                                    =2cos12x]2π3π2

                                    =2(cosπcos3π4)

                                    =2(1+22)

                                    =22

    Let the required area be A.

  A=Area of ΔPQRArea of yellow region

  A=222+2=3222



ဆက္လက္ ေဖၚျပပါမည္
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم