Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

Sample Question for 2020 Matriculation Examination


2020
MATRICULATION EXAMINATION
Sample Question Set (3)
MATHEMATICS                        Time allowed: 3hours
WRITE YOUR ANSWERS IN THE ANSWER BOOKLET.
SECTION (A)
(Answer ALL questions.) 

1 (a).     Let f:R{±2}R be a function defined by f(x)=3xx24.Find the positive value of z such that f(z)=1.

(3 marks)

Show/Hide Solution

f(x)=3xx24f(z)=13zz24=1z24=3zz23z4=0(z+1)(z4)=0z=1 or z=4Since z>0, z=4

1(b).     If the polynomial x33x2+axb is divided by (x2) and (x+2), the remainders are 21 and 1 respectively. Find the values of a and b.


(3 marks)

Show/Hide Solution

Let f(x)=x33x2+axbWhen f(x) is divided by (x2), The remainder is 21.f(2)=21(2)33(2)2+a(2)b=212ab=25 (1)When f(x) is divided by (x+2), The remainder is 1.f(2)=1(2)33(2)2+a(2)b=12a+b=21 (2)(1)+(2)4a=4a=1(1)(2)2b=46b=23

2(a).     Find the middle term in the expansion of (x22y)10.
(3 marks)

Show/Hide Solution

(r+1)th term in the expansion of (x22y)10=10Cr(x2)10r(2y)r middle term in the expansion of (x22y)10=6th term                                                              =(5+1)th term                                                              =10C5(x2)105(2y)5                                                              =10×9×8×7×61×2×3×4×5x10(32y5)                                                              =8064x10y5

2(b).     In a sequence if u1=1 and un+1=un+3(n+1), find u5 .
(3 marks)

Show/Hide Solution

u1=1, un+1=un+3(n+1)u2=u1+1=u1+3(1+1)=1+6=7   u3=u2+1=u2+3(2+1)=7+9=16   u4=u3+1=u3+3(3+1)=16+12=28   u5=u4+1=u4+3(4+1)=28+15=43

3(a).     If P=(x48y9) and P1=(3x47y3), find the values of x and y.
(3 marks)

Show/Hide Solution

P=(x48y9), P1=(3x47y3)Since PP1=I,(x48y9)(3x47y3)=(1001)(3x2+28y4x1224x+3xy+63y54y)=(1001)3x2+28y=1y=3x2+128   4x12=0x=3  24x+3xy+63y=0   54y=1y=1 x=3 and y=1.

3(b).     A bag contains tickets, numbered 11,12,13,....,30. A ticket is taken out from the bag at random. Find the probability that the number on the drawn ticket is


(i) a multiple of 7

(ii) greater than 15 and a multiple of 5.


(3 marks)

Show/Hide Solution

Set of possible outcomes ={11, 12, 13, ..., 30}Number of possible outcomes =20Set of favourable outcomes for a number multiple of 7= { 14, 21, 28 } Number of favourable outcomes =3P(a number multiple of 7)=320Set of favourable outcomes for a number greater than 15 and a multiple of 5 = {  20, 25, 30 } Number of favourable outcomes =3P(a number greater than 15 and amultiple of 5)=320

4(a).     Draw a circle and a tangent TAS meeting it at A. Draw a chord AB making TAB= 60 and another chord BCTS. Prove that ABC is equilateral.


(3 marks)

Show/Hide Solution

Since BCTS,   β=TAB   [alternating ] β=60   γ=TAB   [ between tangent and chord                        = in alternate segment ] γ=60Since α+β+γ=180,α=180(β+γ)α=180(60+60)α=60α=β=γ ABC is equilateral.

4(b).     If 3 OA2OBOC =0, show that the points A,B and C are collinear.
(3 marks)

Show/Hide Solution

   3 OA2OBOC =02 OA2OB+OAOC =0   2 (OAOB)+(OAOC) =0   2BA+CA=02BA=CA2BA=AC A, B and C are collinear.

5(a).     Solve the equation 2sinxcosxcosx+2sinx1=0 for 0x 360.
(3 marks)

Show/Hide Solution

For 0x 360,2sinxcosxcosx+2sinx1=0cosx(2sinx1)+(2sinx1)=0(2sinx1)(cosx+1)=0sinx=12 or cosx=1(i) sinx=12    x=30 or x=150(ii) cosx=1     x=180x=30 or x=150 or x=180

5(b).     Differentiate y=13x from the first principles.
(3 marks)

Show/Hide Solution

y=13xy+δy=13x+δxδy=13x+δx13xδy=3x3x+δx3x3x+δxδyδx=13x3x+δx3x3x+δxδx     =13x3x+δx3x3x+δxx+δxx     =13x3x+δx3x3x+δx(3x+δx)3(3x)3     =13x3x+δx(3x+δx3x)(3x+δx)3(3x)3     =13x3x+δx(3x+δx3x)(3x+δx3x)[(3x+δx)2+(3x+δx)(3x)+(3x)2]     =13x3x+δx1(3x+δx)2+(3x+δx)(3x)+(3x)2dydx=limδx0δyδx     =limδx0[13x3x+δx1(3x+δx)2+(3x+δx)(3x)+(3x)2]     =13x3x1(3x)2+(3x)(3x)+(3x)2     =1(3x)21(3x)2+(3x)2+(3x)2     =13(3x)2(3x)2     =13(3x)4     

SECTION (B)
(Answer Any FOUR questions.) 

6 (a).    Given that Given A={xR| x12,x32}. If f:AA and g:AA are defined by f(x)=3x52x+1 and g(x)=x+532x, show that f and g are inverse of each other.
(5 marks)

Show/Hide Solution

A={xR| x12,x32}f:AA,f(x)=3x52x+1g:AA,g(x)=x+532x(fg)(x)=f(g(x))             =f(x+532x)             =3(x+532x)52(x+532x)+1             =3x+1515+10x32x2x+10+32x32x             =13x32x1332x             =x             =I(x)(gf)(x)=g(f(x))             =g(3x52x+1)             =(3x52x+1)+532(3x52x+1)             =3x5+10x+52x+16x+36x+102x+1             =13x2x+1132x+1             =x             =I(x)(fg)(x)=(gf)(x)=I(x)f=g1 and g=f1

6 (b).     Given that x5+ax3+bx23=(x21)Q(x)x2, where Q(x) is a polynomial. State the degree of Q(x) and find the values of a and b. Find also the remainder when Q(x) is divided by x+2.

(5 marks)

Show/Hide Solution

x5+ax3+bx23=(x21)Q(x)x2x5+ax3+bx2+x1=(x21)Q(x)degree of Q(x)=3x5+ax3+bx2+x1=(x21)Q(x)x5+ax3+bx2+x1=(x1)(x+1)Q(x)When x=11+a+b+11=(11)(1+1)Q(x)1+a+b=0a+b=1 (1)When x=11a+b11=(11)(1+1)Q(x)3a+b=0a+b=3   (2)(1)+(2)2b=2b=1(1)(2)2a=4a=2x52x3+x2+x1=(x21)Q(x)Q(x)=x52x3+x2+x1x21When Q(x) is divided by x+2the remainder is Q(2).Q(2)=(2)52(2)3+(2)2+(2)1(2)21            =5

7 (a).     The binary operation on R be defined by xy=x+y+10xy Show that the binary operation is commutative. Find the values b such that (1b)b=485.

(5 marks)

Show/Hide Solution

xy=x+y+10xyyx=y+x+10yx        =x+y+10xyxy=yx The binary operation is commutative.1b=1+b+10b(1b)b=(1+b+10b)b               =(1+b+10b)+b+10(1+b+10b)b               =1+22b+110b2(1b)b=4851+22b+110b2=485110b2+22b484=05b2+b22=0(5b+11)(b2)=0b=115 or b=2

7 (b).     If, in the expansion of (1+x)m(1x)n, the coefficient of x and x2 are 5 and 7 respectively, then find the value of m and n.

(5 marks)

Show/Hide Solution

(1+x)m(1x)n=(1+mC1x+mC2x2+...)(1nC1x+nC2x2+...)                     =1+(mC1nC1)x+(mC2mC1nC1+nC2)x2+...                     =1+(mn)x+(m(m1)2mn+n(n1)2)x2+...                     =1+(mn)x+(m22mn+n2(m+n)2)x2+...                     =1+(mn)x+((mn)2(m+n)2)x2+...By the problem,    mn=5                      (1)   (mn)2(m+n)2=7(5)2(m+n)2=7   25(m+n)=14   m+n=11                      (2)(1)+(2)2m=6m=3(1)(2)2n=16n=8

8 (a).     Find the solution set in R for the inequation 2x(x+2)(x+1)(x+3) and illustrate it on the number line.

(5 marks)

Show/Hide Solution

2x(x+2)(x+1)(x+3)2x2+4xx2+4x+3x230(x+3)(x3)0(x+30 and x30) or (x+30 and x30) (x3 and x3) or (x3 and x3) x3 or x3 Solution Set = {x | x3 or x3}Number Line


8 (b).     If the mth term of an A.P. is 1n and nth term is 1m where mn, then show that umn=1.

(5 marks)

Show/Hide Solution

Let the first and the common difference of the give A.P. be a and d respectively.By the problem,um=1na+(m1)d=1nna+mndnd=1      (1)un=1ma+(n1)d=1mma+mndmd=1    (2)(1)(2)a(nm)(nm)d=0(nm)(ad)=0Since mn,nm0.ad=0a=dBy equation (2), am+mndmd=1 mnd=1mna=1umn=a+(mn1)d        =d+mndd        =1

9 (a).     The sum of the first two terms of a geometric progression is 12 and the sum of the first four terms is 120. Calculate the two possible values of the fourth term in the progression.

(5 marks)

Show/Hide Solution

Let the first and the common ratio of the give G.P. be a and r respectively.By the problem,u1+u2=12a+ar=12a(1+r)=12       (1)u1+u2+u3+u4=12012+u3+u4=120u3+u4=108ar2+ar3=108ar2(1+r)=108(2)ar2(1+r)a(1+r)=10812   r2=9r=±3When r=3, a(13)=12 6u4=ar3=6(3)3=162When r=3, a(1+3)=12 3u4=ar3=3(3)3=81

9 (b).     Given that A=(cosθsinθsinθcosθ). If A+A=I where I is a unit matrix of order 2, find the value of θ for 0<θ<90.

(5 marks)

Show/Hide Solution

A=(cosθsinθsinθcosθ)A=(cosθsinθsinθcosθ)By the problem,A+A=I(cosθsinθsinθcosθ)+(cosθsinθsinθcosθ)=(1001)(2cosθ002cosθ)=(1001)2cosθ=1   cosθ=12   θ=60

10 (a).   The matrix A is given by A=(2345).
(a) Prove that A2=7A+2I where I is the unit matrix of order 2.
(b) Hence, show that A1=12 (A7I).

(5 marks)

Show/Hide Solution

A=(2345)A2=(2345)(2345)=(2×2+3×42×3+3×54×2+5×44×3+5×5)=(16212837)7A+2I=7(2345)+2(1001)=(14212835)+(2002)=(16212837)A2=7A+2IAAA1=7AA1+2IA1AI=7I+2A1A=7I+2A12A1=A7IA1=12(A7I)

10 (b).   Draw a tree diagram to list all possible outcomes when four fair coins are tossed simultaneously. Hence determine the probability of getting:
(a) all heads,
(b) two heads and two tails,
(c) more tails than heads,
(d) at least one tail,
(e) exactly one head.

(5 marks)

Show/Hide Solution

  Number of possible outcomes =16(i) The set of favourable outcomes for getting all heads ={(H,H,H,H)}    Number of favourable outcomes = 1    P (getting all heads) =116(ii) The set of favourable outcomes for getting two heads and two tails     ={(H,H,T,T), (H,T,H,T), (H,T,T,H), (T,H,H,T), (T,H,T,H), (T,T,H,H)}    Number of favourable outcomes = 6    P (getting two heads and two tails) =616=38(iii) The set of favourable outcomes for getting more tails than heads     ={(H,T,T,T), (T,H,T,T), (T,T,H,T), (T,T,T,H)}    Number of favourable outcomes = 4    P (getting more tails than heads) =416=14(iv) P (getting at least one tail)=1P (no tail)                                            =1P (all head)                                            =1116                                            =1516(v) The set of favourable outcomes for getting exactly one head     ={(H,T,T,T), (T,H,T,T), (T,T,H,T), (T,T,T,H)}    Number of favourable outcomes = 4    P (getting exactly one head) =416=14

SECTION (C)
(Answer Any THREE questions.) 

11 (a).   PQR is a triangle inscribed in a circle. The tangent at P meet RQ produced at T,and PC bisecting RPQ meets side RQ at C. Prove TPC is isosceles.

(5 marks)

Show/Hide Solution

TPC=β+γR=γ   [ between tangent and chord                 = in alternate segment ] Since PC bisects RPQ, β=αTPC=α+RIn RPC, PCT=α+RTPC=PCTTPC is isosceles.

11 (b).   In ABC, D is a point of AC such that AD=2CD. E is on BC such that DEAB. Compare the areas of CDE and ABC. If α(ABED)=40, what is \alpha(ΔABC)?

(5 marks)

Show/Hide Solution

\displaystyle \begin{array}{l}\ \ \ AD=\text{ }2CD\ \text{ }\!\![\!\!\text{ given }\!\!]\!\!\text{ }\\[2ex]\ \ \ DE\parallel AB\\[2ex]\therefore \ \triangle CAB\sim\triangle CDE\\[2ex]\therefore \displaystyle \frac{{\alpha (\triangle CAB)}}{{\alpha (\triangle CDE)}}=\displaystyle \frac{{A{{C}^{2}}}}{{C{{D}^{2}}}}\\[2ex]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle \frac{{{{{(AD+CD)}}^{2}}}}{{C{{D}^{2}}}}\\[2ex]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle \frac{{{{{(2CD+CD)}}^{2}}}}{{C{{D}^{2}}}}\\[2ex]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle \frac{{9C{{D}^{2}}}}{{C{{D}^{2}}}}\\[2ex]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =9\\[2ex]\therefore \displaystyle \frac{{\alpha (\triangle CAB)}}{{\alpha (\triangle CAB)-\alpha (\triangle CDE)}}=\displaystyle \frac{9}{{9-1}}\\[2ex]\therefore \displaystyle \frac{{\alpha (\triangle CAB)}}{{\alpha (ABED)}}=\displaystyle \frac{9}{8}\\[2ex]\therefore \alpha (\triangle CAB)=\displaystyle \frac{9}{8}\alpha (ABED)\\[2ex]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle \frac{9}{8}\times 40\\[2ex]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =45\ \text{sq-unit}\end{array}

12 (a).   If L, M, N, are the middle points of the sides of the \triangle ABC, and P is the foot of perpendicular from A to BC. Prove that L, N, P, M are concyclic.

(5 marks)

Show/Hide Solution

\displaystyle \begin{array}{l}\text{Since }AP\bot BC\text{ and }M\text{ is the midpoint of }AC\text{, }\\[2ex]\text{a circle with centre }M\text{ and diameter }AC\text{ }\\[2ex]\text{will pass through }P\text{.}\\[2ex]\therefore MP\text{ = }MC\text{ }\!\![\!\!\text{ radii of }\odot M\text{ }\!\!]\!\!\text{ }\\[2ex]\therefore \gamma \ \text{=}\ \phi \text{.}\\[2ex]\text{Since }L\text{ and }N\text{ are the midpoints of }AB\text{ and }BC\text{, }\\[2ex]LN\parallel AC\ \text{and }LN=\displaystyle \frac{1}{2}AC.\\[2ex]\text{Similarly }LM\parallel BC\ \text{and }LM=\displaystyle \frac{1}{2}BC.\\[2ex]LMCN\ \text{is a parallelogram}\text{.}\\[2ex]\therefore \gamma \ \text{=}\theta \Rightarrow \phi \ \text{=}\theta \\[2ex]\text{Since}\ \phi +\angle MPN=\text{ }180{}^\circ ,\\[2ex]\ \theta +\angle MPN=\text{ }180{}^\circ ,\\[2ex]L,\ N,\ P,\ M\ \text{are concyclic}\text{.}\end{array}

12 (b).   Solve the equation \displaystyle \sqrt{3}\cos \theta +\sin \theta =\sqrt{2} for \displaystyle 0{}^\circ \le \theta \le 360{}^\circ .

(5 marks)

Show/Hide Solution

\displaystyle \begin{array}{l}\sqrt{3}\cos \theta +\sin \theta =\sqrt{2},\ 0{}^\circ \le \theta \le 360{}^\circ \\[2ex]\text{Let}\ R\cos \alpha =\sqrt{3}\ \text{and}\ R\sin \alpha =1\ \\[2ex]\text{where }R>0\ \text{and}\ \alpha <90{}^\circ .\\[2ex]\therefore {{R}^{2}}{{\cos }^{2}}\alpha +{{R}^{2}}{{\sin }^{2}}\alpha =3+1\\[2ex]\therefore \ {{R}^{2}}\left( {{{{\cos }}^{2}}\alpha +{{{\sin }}^{2}}\alpha } \right)=4\\[2ex]\therefore \ {{R}^{2}}=4\Rightarrow R=2\text{ }\\[2ex]\ \ \ \displaystyle \frac{{R\sin \alpha }}{{R\cos \alpha }}=\displaystyle \frac{1}{{\sqrt{3}}}\\[2ex]\therefore \ \tan \alpha =\ \displaystyle \frac{1}{{\sqrt{3}}}\Rightarrow \alpha =30{}^\circ \\[2ex]\text{Now}\ \ \ \sqrt{3}\cos \theta +\sin \theta \\[2ex]\ \ \ \ \ \ \ \ =R\cos \theta \cos \alpha +R\sin \theta \sin \alpha \\[2ex]\ \ \ \ \ \ \ \ =R\left( {\cos \theta \cos \alpha +\sin \theta \sin \alpha } \right)\\[2ex]\ \ \ \ \ \ \ \ =R\cos \left( {\theta -\alpha } \right)\\[2ex]\ \ \ \ \ \ \ \ =2\cos \left( {\theta -30{}^\circ } \right)\\[2ex]\therefore 2\cos \left( {\theta -30{}^\circ } \right)=\sqrt{2}\\[2ex]\therefore \cos \left( {\theta -30{}^\circ } \right)=\displaystyle \frac{{\sqrt{2}}}{2}\\[2ex]\therefore \theta -30{}^\circ =45{}^\circ \ \text{or}\ \theta -30{}^\circ =315{}^\circ \\[2ex]\therefore \theta =75{}^\circ \ \text{or}\ \theta =345{}^\circ \end{array}

13 (a).   In \triangle ABC, AB = x, BC = x + 2, AC = x - 2 where x > 4, prove that \displaystyle \cos A=\frac{{x-8}}{{2(x-2)}}. Find the integral values of x for which A is obtuse.

(5 marks)

Show/Hide Solution

\displaystyle \vartriangle ABC,AB=x,BC=x+2,AC=x-2,\ x>4

\displaystyle \cos A=\displaystyle \frac{{A{{B}^{2}}+A{{C}^{2}}-B{{C}^{2}}}}{{2\cdot AB\cdot AC}}

\displaystyle \ \ \ \ \ \ \ \ =\displaystyle \frac{{{{x}^{2}}+{{{(x-2)}}^{2}}-{{{(x+2)}}^{2}}}}{{2\cdot x\cdot (x-2)}}

\displaystyle \ \ \ \ \ \ \ \ =\displaystyle \frac{{{{x}^{2}}+{{x}^{2}}-4x+4-{{x}^{2}}-4x-4}}{{2\cdot x\cdot (x-2)}}

\displaystyle \ \ \ \ \ \ \ \ =\displaystyle \frac{{{{x}^{2}}-8x}}{{2\cdot x\cdot (x-2)}}

\displaystyle \ \ \ \ \ \ \ \ =\displaystyle \frac{{x(x-8)}}{{2x(x-2)}}

\displaystyle \ \ \ \ \ \ \ \ =\displaystyle \frac{{x-8}}{{2(x-2)}}

\displaystyle \text{Since} A\ \text{is obtuse}.

\displaystyle \cos A<0

\displaystyle \displaystyle \frac{{x-8}}{{2(x-2)}}<0

\displaystyle \text{Since}\ x>4,\ x-2>2.

\displaystyle \therefore x-8<0\Rightarrow x<8

$ \displaystyle \therefore 4
\displaystyle \therefore \ \text{The integral value of }x\text{ are }5,\ 6\ \text{and }7.


13 (b).   The sum of the perimeters of a circle and square is k, where k is some constant. Using calculus, prove that the sum of their areas is least, when the side of the square is double the radius of the circle.

(5 marks)

Show/Hide Solution

\displaystyle \begin{array}{l}\begin{array}{*{20}{l}} {\text{ Let the side-length of a square be }x} \\[2ex] {\text{ and the radius of the circle be }r} \\[2ex] {\text{ Sum of perimeters }=k(\text{ given })} \\[2ex] {4x+2\pi r=k} \\[2ex] {\therefore r=\displaystyle \frac{{k-4x}}{{2\pi }}} \\[2ex] {\text{ Let the sum of the areas be }A.} \\[2ex] {\therefore A={{x}^{2}}+\pi {{r}^{2}}} \end{array}\\[2ex]\begin{array}{*{20}{l}} {\therefore A={{x}^{2}}+\pi {{{\left( {\displaystyle \frac{{k-4x}}{{2\pi }}} \right)}}^{2}}} \\[2ex] {\therefore A={{x}^{2}}+\displaystyle \frac{{{{{(k-4x)}}^{2}}}}{{4\pi }}} \\[2ex] {\displaystyle \frac{{dA}}{{dx}}=2x+\displaystyle \frac{{2(-4)(k-4x)}}{{4\pi }}} \\[2ex] {\quad =2\left( {x+\displaystyle \frac{{4x-k}}{\pi }} \right)} \\[2ex] {\quad =\displaystyle \frac{2}{\pi }[(\pi +4)x-k]} \end{array}\\[2ex]\begin{array}{*{20}{l}} {\displaystyle \frac{{dA}}{{dx}}=0\text{ when }\displaystyle \frac{2}{\pi }[(\pi +4)x-k]=0} \\[2ex] {\therefore (\pi +4)x-k=0\Rightarrow x=\displaystyle \frac{k}{{\pi +4}}} \\[2ex] {\displaystyle \frac{{{{d}^{2}}A}}{{d{{x}^{2}}}}=\displaystyle \frac{{2(\pi +4)}}{\pi }>0} \\[2ex] {\therefore A\text{ is minimum when }x=\displaystyle \frac{k}{{\pi +4}}} \end{array}\\[2ex]\therefore r=\displaystyle \frac{1}{{2\pi }}\left[ {k-\displaystyle \frac{{4k}}{{\pi +4}}} \right]\\[2ex]\ \ \ \ \ =\displaystyle \frac{1}{{2\pi }}\left[ {\displaystyle \frac{{\pi k+4k-4k}}{{\pi +4}}} \right]\\[2ex]\ \ \ \ \ =\displaystyle \frac{1}{2}\left( {\displaystyle \frac{k}{{\pi +4}}} \right)\\[2ex]\ \ \ \ \ =\displaystyle \frac{x}{2}\\[2ex]\therefore x=2r\\[2ex]\text{Hence the sum of their areas is least,}\\[2ex]\text{when the side of the square is double }\\[2ex]\text{the}\ \text{radius of the circle}\text{.}\end{array}

14 (a).  The vector \overrightarrow{{OA}} has magnitude 39 units and has the same direction as \displaystyle 5\hat{i}+12\hat{j}. The vector \overrightarrow{{OB}} has magnitude 25 units and has the same direction as \displaystyle -3\hat{i}+4\hat{j}. Express \overrightarrow{{OA}} and \overrightarrow{{OB}} in terms of \hat{i} and \hat{j} and find the magnitude of \overrightarrow{{AB}}.

(5 marks)

Show/Hide Solution

\displaystyle \begin{array}{*{20}{l}} {\text{ Let }\vec{p}=5\hat{\imath }+12\hat{\jmath }\text{ and }\vec{q}=-3\hat{\imath }+4\hat{\jmath }} \\[2ex] \begin{array}{l}\therefore \ |\vec{p}|=\sqrt{{{{5}^{2}}+{{{12}}^{2}}}}=\sqrt{{169}}=13\text{ and }\\[2ex]\ \ |\vec{q}|=\sqrt{{{{{(-3)}}^{2}}+{{4}^{2}}}}=\sqrt{{25}}=5\end{array} \\[2ex] \begin{array}{l}\therefore \hat{p}=\displaystyle \frac{{\vec{p}}}{{|\vec{p}|}}=\displaystyle \frac{1}{{13}}(5\hat{\imath }+12\hat{\jmath })\text{ and }\\[2ex]\ \ \ \hat{q}=\displaystyle \frac{{\vec{q}}}{{|\vec{q}|}}=\displaystyle \frac{1}{5}(-3\hat{\imath }+4\hat{\jmath })\end{array} \\[2ex] {\ \ \ |\overrightarrow{{OA}}|=39\text{ and }\overrightarrow{{OA}}\text{ has the same direction }\hat{p}.} \\[2ex] \begin{array}{l}\therefore \overrightarrow{{OA}}=39\hat{p}\\[2ex]\ \ \ \ \ \ \ \ =39\times \displaystyle \frac{1}{{13}}(5\hat{\imath }+12\hat{\jmath })=15\hat{\imath }+36\hat{\jmath }\\[2ex]\ \ \ \ \ \ \ \ =15\hat{\imath }+36\hat{\jmath }\\[2ex]\begin{array}{*{20}{l}} \begin{array}{l}\text{ Similarly, }\\[2ex]\ \ |\overrightarrow{{OB}}|\ =25\text{ and }\overrightarrow{{OB}}\text{ has the same direction }\hat{q}\text{ }\text{. }\end{array} \\[2ex] \begin{array}{l}\therefore \overrightarrow{{OB}}=25\hat{q}\\[2ex]\ \ \ \ \ \ \ \ =25\times \displaystyle \frac{1}{5}(-3\hat{\imath }+4\hat{\jmath })=-15\hat{\imath }+20\hat{\jmath }\\[2ex]\ \ \ \ \ \ \ \ =-15\hat{\imath }+20\hat{\jmath }\end{array} \\[2ex] \begin{array}{l}\therefore \overrightarrow{{AB}}=\overrightarrow{{OB}}-\overrightarrow{{OA}}\\[2ex]\ \ \ \ \ \ \ \ =(-15\hat{\imath }+20\hat{\jmath })-(15\hat{\imath }+36\hat{\jmath })\\[2ex]\ \ \ \ \ \ \ \ =-30\hat{\imath }-16\hat{\jmath }\end{array} \\[2ex] \begin{array}{l}\therefore \ |\overrightarrow{{AB}}|\ =\sqrt{{{{{(-30)}}^{2}}+{{{(-16)}}^{2}}}}\\[2ex]\ \ \ \ \ \ \ \ \ \ \ =\sqrt{{1156}}\\[2ex]\ \ \ \ \ \ \ \ \ \ \ =34\end{array} \end{array}\end{array} \end{array}

14 (b).  Find the coordinates of the stationary points of the curve y = x\ln x - 2x. Determine whether it is a maximum or a minimum point.

(5 marks)

Show/Hide Solution

\displaystyle \begin{array}{*{20}{l}} {\text{Curve : }y=x\ln x-2x} \\[2ex] \begin{array}{l}\displaystyle \frac{{dy}}{{dx}}=x\left( {\displaystyle \frac{1}{x}} \right)+\ln x-2\\[2ex]\,\ \ \ \ =\ln x-1\end{array} \\[2ex] {\displaystyle \frac{{dy}}{{dx}}=0\text{ when }\ln x-1=0} \\[2ex] \begin{array}{l}\text{ln }x=1\\[2ex]x=e\left( {\ln x={{{\log }}_{e}}x} \right)\end{array} \\[2ex] \begin{array}{l}\text{When }x=e,\\[2ex]y=e\ln e-2e\\[2ex]\ \ \ =-e\end{array} \\[2ex] {\therefore \text{ The stationary point is }(e,-e)} \\[2ex] \begin{array}{l}\displaystyle \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=\displaystyle \frac{1}{x}\\[2ex]{{\left. {\displaystyle \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}} \right|}_{{x=e}}}=\displaystyle \frac{1}{e}>0\end{array} \\[2ex] {\therefore (e,-e)\text{ is a minimum point}\text{. }} \end{array}
နားလည်လွယ်ကူစေရန် illustration ထည့်ပေးခြင်း ဖြစ်သည်။ ဖြေဆိုသည့်အခါ ပုံထည့်ဆွဲပေးရန်မလိုပါ။

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post