Loading [MathJax]/jax/output/HTML-CSS/jax.js

Logarithms : Exercise (3.2) Solutions

1.           Write the following equations in logarithmic form.

              (a)   34=81

              (b)   932=27

              (c)   103=0.001

              (d)   31=13

              (e)   (14)3=64

Show/Hide Solution

(a)  34=81     log381=4(b)  932=27     log927=32(c)  103=0.001     log100.001=3(d)  31=13     log313=1(e)  (14)3=64     log1464=3

2.           Write the following equations in exponential form.

             (a)   log103=0.4771

             (b)   log60.001=3.855

             (c)   log14412=12

             (d)   5=log31243

             (e)   logx.7=y2, where, 0<x<1

Show/Hide Solution

(a)  log103=0.4771     30.4771=10(b)  log60.001=3.855     63.855=0.001(c)  log14412=12     14412=12(d)  5=log31243     1243=35(e)  logx.7=y2,  where 0<x<1    xy2=.7

3.           Solve the following equations

             (a)   log749=x

             (b)   logx10=1

             (c)   log3x=2

             (d)   xlogxx=5

             (e)   log0.25=x

Show/Hide Solution

(a)  log749=x     7x=49     7x=72     x=2(b)  logx10=1     x1=10     x=10(c)  log3x=2     x=(3)2     x=3(d)  xlogxx=5     x=5(e)  log0.25=x     0.2x=5     (15)x=5     5x=51     x=1  

4.           Evaluate.

             (a)   9log92+3log38

             (b)   log445×log10102

             (c)   7log79+log2(12)

             (d)   log12184log1010

             (e)   101log103

Show/Hide Solution

(a)    9log92+3log38     =2+8     =10(b)    log445×log10102     =5×2     =10(c)     7log79+log2(12)     =7log79+log221     =91     =8(d)     log12184log1010     =log12(12)34log1010     =34(1)     =1(e)     101log103     =1010log103     =103

5.           Find the value of x in each of the following problems.

             (a)   log3(2x5)=2, where x>52

             (b)   log77(log7x)=0, where x>0

             (c)   8+3x=10, given that log32=0.6309

Show/Hide Solution

(a)  log3(2x5)=2,where x>52     2x5=32     2x5=9     x=7(b)  log77(log7x)=0,  where x>0     log7x=770     log7x=1     x=71=7(c)  8+3x=10, given that log32=0.6309     3x=2     x=log32     x=0.6309

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم