1. Write the following equations in logarithmic form.
(a) 34=81
(b) 932=27
(c) 10−3=0.001
(d) 3−1=13
(e) (14)−3=64
Show/Hide Solution
(a) 34=81 log381=4(b) 932=27 log927=32(c) 10−3=0.001 log100.001=−3(d) 3−1=13 log313=−1(e) (14)−3=64 log1464=−3
2. Write the following equations in exponential form.
(a) log103=0.4771
(b) log60.001=−3.855
(c) log14412=12
(d) −5=log31243
(e) logx.7=y2, where, 0<x<1
Show/Hide Solution
(a) log103=0.4771 30.4771=10(b) log60.001=−3.855 6−3.855=0.001(c) log14412=12 14412=12(d) −5=log31243 1243=3−5(e) logx.7=y2, where 0<x<1 xy2=.7
3. Solve the following equations
(a) log749=x
(b) logx10=1
(c) log√3x=2
(d) xlogxx=5
(e) log0.25=x
Show/Hide Solution
(a) log749=x 7x=49 7x=72 x=2(b) logx10=1 x1=10 x=10(c) log√3x=2 x=(√3)2 x=3(d) xlogxx=5 x=5(e) log0.25=x 0.2x=5 (15)x=5 5−x=51 x=−1
4. Evaluate.
(a) 9log92+3log38
(b) log445×log10102
(c) 7log79+log2(12)
(d) log1218−4log1010
(e) 101−log103
Show/Hide Solution
(a) 9log92+3log38 =2+8 =10(b) log445×log10102 =5×2 =10(c) 7log79+log2(12) =7log79+log22−1 =9−1 =8(d) log1218−4⋅log1010 =log12(12)3−4⋅log1010 =3−4⋅(1) =−1(e) 101−log103 =1010log103 =103
5. Find the value of x in each of the following problems.
(a) log3(2x−5)=2, where x>52
(b) log77(log7x)=0, where x>0
(c) 8+3x=10, given that log32=0.6309
Show/Hide Solution
(a) log3(2x−5)=2,where x>52 2x−5=32 2x−5=9 x=7(b) log77(log7x)=0, where x>0 log7x=770 log7x=1 x=71=7(c) 8+3x=10, given that log32=0.6309 3x=2 x=log32 x=0.6309
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!