Processing math: 100%

QUADRATIC FUNCTIONS : EXERCISE (5.3) SOLUTIONS



1.         Find the discriminant of each of the following quadratic functions. Also find the number of x -intercepts of each of the functions.

           (a)  y=3x24x+3(b)  y=2x24x3(c)  y=12x2+x4(d)  y=x2+6x9(e)  y=3x212x7(f)  y=12x23x4

           (a)  y=3x24x+3

Show/Hide Solution

     y=3x24x+3     Comparing with ax2+bx+c we have,     a=3, b=4, c=3       Discriminant  =b24ac                         =(4)24(3)(3)                         =20<0       There is no xintercept point.

           (b)  y=2x24x3

Show/Hide Solution

     y=2x24x3     Comparing with ax2+bx+c we have,     a=2, b=4, c=3       Discriminant  =b24ac                         =(4)24(2)(3)                         =8>0       There are two xintercept points.

           (c)  y=12x2+x4

Show/Hide Solution

     y=12x2+x4     Comparing with ax2+bx+c we have,     a=12, b=1, c=4       Discriminant  =b24ac                         =(1)24(12)(4)                         =9>0       There are two xintercept points.

           (d)  y=x2+6x9

Show/Hide Solution

     y=x2+6x9     Comparing with ax2+bx+c we have,     a=1, b=6, c=9       Discriminant  =b24ac                         =(6)24(1)(9)                         =0       There is one xintercept point. 

           (e)  y=3x212x7

Show/Hide Solution

     y=3x212x7     Comparing with ax2+bx+c we have,     a=3, b=12, c=7       Discriminant  =b24ac                         =(12)24(3)(7)                         =60>0       There are two xintercept points.

           (f)  y=12x23x4

Show/Hide Solution

     y=12x23x4     Comparing with ax2+bx+c we have,     a=12, b=3, c=4       Discriminant  =b24ac                         =(3)24(frac12)(4)                         =1>0       There are two xintercept points.


2.         Find the intercept form of each of the quadratic functions. Also find the y -intercept, axis of symmetry, vertex, and range of each of the functions.

           (a)  y=2x22x12(b)  y=3x26x+3(c)  y=12x2+x4(d)  y=2x25x3(e)  y=6x27x+5(f)  y=12x23x4

           (a)  y=2x22x12

Show/Hide Solution

    y=2x22x12    y=2(x2x6)    y=2(x+2)(x3)    When x=0, y=12     yintercept point=(0, 12)   Comparing with y=a(xp)(xq),    a=2, p=2, q=3    Axis of symmetry x=p+q2x=12    When x=12, y=2(12)22(12)12=252    vertex =(12,252)    range ={y | y252}

           (b)  y=3x26x+3

Show/Hide Solution

    y=3x26x+3    y=3(x22x+1)    y=3(x1)(x1)    When x=0, y=3     yintercept point =(0, 3)   Comparing with y=a(xp)(xq),    a=3, p=1, q=1    Axis of symmetry x=1+12x=1    When x=1, y=3(11)(11)=0    vertex =(1,0)

           (c)  y=12x2+x4

Show/Hide Solution

    y=12x2+x4    y=12(x2+2x8)    y=12(x+4)(x2)    When x=0, y=4     yintercept point =(0, 4)   Comparing with y=a(xp)(xq),    a=12, p=4, q=2    Axis of symmetry x=4+22x=1    When x=1, y=12(1+4)(12)=92    vertex =(1,92)    range ={y | y92}

           (d)  y=2x25x3

Show/Hide Solution

    y=2x25x3    y=2(x252x32)    y=2(x+12)(x3)    When x=0, y=3     yintercept point =(0, 3)   Comparing with y=a(xp)(xq),    a=2, p=12, q=3    Axis of symmetry x=12+32x=54    When x=54, y=2(54+12)(543)=498    vertex =(54,498)    range ={y | y498}

           (e)  y=6x27x+5

Show/Hide Solution

    y=6x27x+5    y=(6x27x5)    y=(3x+5)(2x1)    y=3(x+53)2(x12)    y=6(x+53)(x12)    When x=0, y=5     yintercept point =(0, 5)    Comparing with y=a(xp)(xq),    a=6, p=52, q=12    Axis of symmetry x=53+122x=712    When x=54, y=6(712+53)(71212)=16924    vertex =(712,16924)    range ={y | y16924}

           (f)  y=12x23x4

Show/Hide Solution

    y=12x23x4    y=12(x2+6x+8)    y=12(x+4)(x+2)    When x=0, y=4     yintercept point =(0, 4)    Comparing with y=a(xp)(xq),    a=12, p=4, q=2    Axis of symmetry x=422x=3    When x=54, y=12(3+4)(3+2)=12    vertex =(3,12)    range ={y | y12}

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم