Processing math: 2%

Chapter 4 : Functions - Multiple Choice Questions

မှန်သော အဖြေကို ရွေးပေးရန် ဖြစ်ပါသည်။

  1. If A={a,b,c}, then n(A×A)=
    Explanation
    A={a,b,c}A×A={(a,a),(a,b),(a,c), (b,a),(b,b),(b,c), (c,a),(c,b),(c,c)}
  2. Given that A=\{a\}, then A \times A=
    Explanation
    \begin{array}{l} A=\{a\} \\\\ A \times A=\{a\} \times\{a\} \\\\ \hspace{1.3cm}=\{(a, a)\} \end{array}

    product sets ၏ အစု၀င်များကို orderd pair (x,y) ပုံစံဖြင့်ရေးရသည်။
  3. Given that f(x)=x^{2}+3 x+1 . If f(a)=\dfrac{31}{4} where a>0, then what is the value of a ?
    Explanation
    \begin{array}{l} f(x)=x^{2}+3 x+1 \\\\ f(a)=\dfrac{31}{4} \\\\ a^{2}+2 a+1=\dfrac{31}{4} \\\\ 4 a^{2}+12 a-27=0\\\\ (2 a+9)(2 a-3)=0\\\\ a=-\dfrac{9}{2}\ \text{(or)}\ a=\dfrac{3}{2}\\\\ \end{array}
    Since a>0, the correct solution is a=\dfrac{3}{2} .
  4. What is the domain of f(x)=\dfrac{1}{x^{2}-4}.
    Explanation
    f(x) is not defined when
    x^{2}-4=0
    x^{2}=4
    x=\pm 2
    \therefore dom (f)=\mathbb{R} \smallsetminus\{-2,2\}.
  5. Given that A=\{x \mid x>0, x \in \mathbb{R}\} and function f: A \rightarrow \mathbb{R} and g: A \rightarrow \mathbb{R} ane defined as f(x)=x-2 and g(x)=\dfrac{x^{2}-4}{x+2}. Which of the following is(are) true?
    I. f(2)=g(2)\quad II. f=g\quad III. f \ne g
    Explanation
    \operatorname{dom}(f)=\operatorname{dom}(g)=A=\{x \mid x>0, x \in \mathbb{R}\}
    \therefore \operatorname{dom}(f) and \operatorname{dom}(g) are the set of positive real nembers.
    f(x)=x-2 and g(x)=\dfrac{x^{2}-4}{x+2}=\dfrac{(x-2)(x+2)}{x+2}=x-2 when x \ne-2
    Since -2 \notin A, we can say f(x)=g(x) for all x \in A
  6. The graph of the function y=a x^{2}+b x+c when a=0 is
    Explanation
    Generally y=a x^{2}+b x+c is a quadratic function.
    But when a=0, y=b x+c is a linear function and the graph is a straight line.
  7. What is the equation of horizontal asymptote of the curve y=\dfrac{3}{x-1}+2 .
    Explanation
    We have known that the graph y=\dfrac{k}{x-p}+q has horizontal asymptote y=q and vertical asymptote x=p.
    \therefore The horizontal arympatote of y=\dfrac{3}{x-1}+2 is y=2.
  8. The furction f(x)=\dfrac{3}{x-1}+2 is not defined when
    Explanation
    A rational function is not defined when its denominator is equal to zero.
    \therefore f(x)=\dfrac{3}{x-1}+2 is not defined when
    x-1=0 \text { or } x=1,
  9. The vertical asymptote of the graph of function y=\dfrac{-3 x+4}{x-2} is
    Explanation
    We have known that the graph y=\dfrac{k}{x-p}+q has horizontal asymptote y=q and vertical asymptote x=p.
    y=-\dfrac{3 x+4}{x-2}=-\dfrac{2}{x-2}-3
    \therefore The vertical asymptote of y=-\dfrac{3 x+4}{x-2} is x=2.
  10. Which of the following is one to one?
    Explanation
    See: Definition of one to one furction Chapter (4), Section (4.3 .2)
  11. If f^{-1}(x)=\dfrac{x-3}{2}, then f(x)=\ldots
    Explanation
    f^{-1}(x)=\dfrac{x-3}{2}
    Let f(x)=y, then
    f^{-1}(y)=x
    \dfrac{y-3}{2}=x
    y=2 x+3
    \therefore f(x)=2 x+3
  12. Given that f(x)=\dfrac{4}{2-3 x}, then the domain of f^{-1} is
    Explanation
    f(x)=\dfrac{4}{2-3 x}
    If f^{-1}(x)=y then
    f(y)=x
    \dfrac{4}{2-3 y}=x
    2-3 y=\dfrac{4}{x}
    3 y=-\dfrac{4}{x}+2
    y=\dfrac{2 x-4}{x}
    f^{-1}(x)=\dfrac{2 x-4}{3 x}
    \therefore f^{-1} exists when x \ne 0 .
  13. If f(x)=\dfrac{3 x-1}{2 x+1}, f^{-1}(1)=\ldots
    Explanation
    f(x)=\dfrac{3 x-1}{2 x+1}
    f^{-1}(1)=a
    f(a)=1
    \dfrac{3 a-1}{2 a+1}=1
    3a-1=2 a+1
    a=2
    \therefore\ f^{-1}(1)=2
  14. The function f is given by f(x)=10^{x}-2, then f^{-1}(2)=\cdots
    Explanation
    f(x)=10^{x}-2
    Let f^{-1}(2)=a
    f(a)=2
    10^{a}-2=2
    10^{a}=4
    a=\log _{10} 4
    \therefore\ f^{-1}(2)=\log _{10} 4
  15. Given that f(x)=x^{2}, what is the domain of f for which f^{-1} exists?
    Explanation
    f^{-1} exists if and only if f is a one to one function.
    f(x) is one to one only when x \ge 0.
    \therefore \operatorname{dom}(f)=\{x \mid x \ge 0, x \in \mathbb{R}\}.
  16. If f(x)=x^{2} and g(x)=2 x,(f \circ g)\left(-\dfrac{1}{2}\right)=\ldots
    Explanation
    f(x)=x^{2}
    g(x)=2 x
    (f \circ g)\left(-\dfrac{1}{2}\right)
    =f\left(g\left(-\dfrac{1}{2}\right)\right)
    =f\left(2\left(-\dfrac{1}{2}\right)\right)
    =f(-1)
    =(-1)^{2}
    =1
  17. If f(x)=x^{2} and g(x)=\dfrac{2 x+1}{x-4}, what is the domain of g\circ f ?
    Explanation
    \begin{aligned} f(x)&=x^{2} \\\\ g(x)&=\dfrac{2 x+1}{x-4} \\\\ (g \circ f)(x)&=g(f(x)) \\\\ &=g\left(x^{2}\right)\\\\ &=\dfrac{2 x^{2}+1}{x^{2}-4} \\\\ (g \circ f)(x) &\text { exists when } \\\\ x^{2}-4 &\neq 0 \\\\ x^{2} &\neq 4 \\\\ x &\neq \pm 2 \\\\ \therefore\ \operatorname{dom}(g \circ f)&=\mathbb{R} \smallsetminus\{\pm 2\} \end{aligned}
  18. If g(x)=\dfrac{x+2}{2 x-1} and h(x)=2 x, what is the range of g \circ h ?
    Explanation
    \begin{aligned} g(x)&=\dfrac{x+2}{2 x-1} \\\\ h(x)&=2 x \\\\ (g \circ h)(x) &=g(h(x))\\\\ &=g(2 x) \\\\ &=\dfrac{2 x+2}{4 x-1} \\\\ &=\dfrac{5 / 2}{4 x-1}+\dfrac{1}{2} \\\\ \therefore \operatorname{ran}(g \cdot f)&=\left\{y \mid y \neq \dfrac{1}{2}, y \in \mathbb{R}\right\} \end{aligned}
  19. The function f: A \rightarrow B is onto function then the range of f is
    Explanation
    A function f is onto function when range of f= codomain.
  20. If f is a function an a set A=\{1,2,3,4,5\} such that f=\{(1,2),(2,3),(3,4),(4, x),(5,5)\} is a one to function, then x=\ldots
    Explanation
    To be one to ove furction f, A must be related with 1.
  21. Your Score:

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post