Homechapter-4 Chapter 4 : Functions - Multiple Choice Questions သူရိန်မင်း Thursday, August 05, 2021 0 မှန်သော အဖြေကို ရွေးပေးရန် ဖြစ်ပါသည်။ If A={a,b,c}, then n(A×A)= A. 3 B. 6 C. 9 D. 12 Explanation A={a,b,c}A×A={(a,a),(a,b),(a,c), (b,a),(b,b),(b,c), (c,a),(c,b),(c,c)}∴ Given that A=\{a\}, then A \times A= A. \{a\} B. \{(a, a)\} C.\{a, a\} D. a^{2} Explanation \begin{array}{l} A=\{a\} \\\\ A \times A=\{a\} \times\{a\} \\\\ \hspace{1.3cm}=\{(a, a)\} \end{array} product sets ၏ အစု၀င်များကို orderd pair (x,y) ပုံစံဖြင့်ရေးရသည်။ Given that f(x)=x^{2}+3 x+1 . If f(a)=\dfrac{31}{4} where a>0, then what is the value of a ? A. \dfrac{3}{2} or \dfrac{9}{2} B. -\dfrac{3}{2} or \dfrac{9}{2} C.-\dfrac{9}{2} or \dfrac{3}{2} D. \dfrac{3}{2} Explanation \begin{array}{l} f(x)=x^{2}+3 x+1 \\\\ f(a)=\dfrac{31}{4} \\\\ a^{2}+2 a+1=\dfrac{31}{4} \\\\ 4 a^{2}+12 a-27=0\\\\ (2 a+9)(2 a-3)=0\\\\ a=-\dfrac{9}{2}\ \text{(or)}\ a=\dfrac{3}{2}\\\\ \end{array} Since a>0, the correct solution is a=\dfrac{3}{2} . What is the domain of f(x)=\dfrac{1}{x^{2}-4}. A. \mathbb{R} \smallsetminus\{-2,2\} B. \mathbb{R} \smallsetminus\{4\} C. \mathbb{R} D. \varnothing Explanation f(x) is not defined when x^{2}-4=0 x^{2}=4 x=\pm 2 \therefore dom (f)=\mathbb{R} \smallsetminus\{-2,2\}. Given that A=\{x \mid x>0, x \in \mathbb{R}\} and function f: A \rightarrow \mathbb{R} and g: A \rightarrow \mathbb{R} ane defined as f(x)=x-2 and g(x)=\dfrac{x^{2}-4}{x+2}. Which of the following is(are) true? I. f(2)=g(2)\quad II. f=g\quad III. f \ne g A. I only B. II only C.I and II only D. I and III only Explanation \operatorname{dom}(f)=\operatorname{dom}(g)=A=\{x \mid x>0, x \in \mathbb{R}\} \therefore \operatorname{dom}(f) and \operatorname{dom}(g) are the set of positive real nembers. f(x)=x-2 and g(x)=\dfrac{x^{2}-4}{x+2}=\dfrac{(x-2)(x+2)}{x+2}=x-2 when x \ne-2 Since -2 \notin A, we can say f(x)=g(x) for all x \in A The graph of the function y=a x^{2}+b x+c when a=0 is A. straight line B. parabola C. circle D. ellipse Explanation Generally y=a x^{2}+b x+c is a quadratic function. But when a=0, y=b x+c is a linear function and the graph is a straight line. What is the equation of horizontal asymptote of the curve y=\dfrac{3}{x-1}+2 . A. y=2 B. y=3 C. x=1 D. x=-1 Explanation We have known that the graph y=\dfrac{k}{x-p}+q has horizontal asymptote y=q and vertical asymptote x=p. \therefore The horizontal arympatote of y=\dfrac{3}{x-1}+2 is y=2. The furction f(x)=\dfrac{3}{x-1}+2 is not defined when A. y=2 B. y=3 C. x=1 D. x=-1 Explanation A rational function is not defined when its denominator is equal to zero. \therefore f(x)=\dfrac{3}{x-1}+2 is not defined when x-1=0 \text { or } x=1, The vertical asymptote of the graph of function y=\dfrac{-3 x+4}{x-2} is A. x=2 B. x=-2 C. x=\dfrac{4}{3} D. y=-3 Explanation We have known that the graph y=\dfrac{k}{x-p}+q has horizontal asymptote y=q and vertical asymptote x=p. y=-\dfrac{3 x+4}{x-2}=-\dfrac{2}{x-2}-3 \therefore The vertical asymptote of y=-\dfrac{3 x+4}{x-2} is x=2. Which of the following is one to one? A. f(x)=x^{2} B. f(x)=|x| C.f(x)=x^{4}-1 D. f(x)=x^{3}+3 Explanation See: Definition of one to one furction Chapter (4), Section (4.3 .2) If f^{-1}(x)=\dfrac{x-3}{2}, then f(x)=\ldots A. x-3 B. 2 x-3 C. 2 x+3 D. \dfrac{x-2}{3} Explanation f^{-1}(x)=\dfrac{x-3}{2} Let f(x)=y, then f^{-1}(y)=x \dfrac{y-3}{2}=x y=2 x+3 \therefore f(x)=2 x+3 Given that f(x)=\dfrac{4}{2-3 x}, then the domain of f^{-1} is A. \left\{n \mid x \ne \dfrac{3}{2}, x \in \mathbb{R}\right\} B. \left\{x \mid x \ne \dfrac{2}{3}, x \in \mathbb{R}\right\} C. \left\{x \mid x \ne-\dfrac{2}{3}, x \in \mathbb{R}\right\} D. \{x \mid x \neq 0, x \in \mathbb{R}\} Explanation f(x)=\dfrac{4}{2-3 x} If f^{-1}(x)=y then f(y)=x \dfrac{4}{2-3 y}=x 2-3 y=\dfrac{4}{x} 3 y=-\dfrac{4}{x}+2 y=\dfrac{2 x-4}{x} f^{-1}(x)=\dfrac{2 x-4}{3 x} \therefore f^{-1} exists when x \ne 0 . If f(x)=\dfrac{3 x-1}{2 x+1}, f^{-1}(1)=\ldots A. 0 B. 1 C. 2 D. 3 Explanation f(x)=\dfrac{3 x-1}{2 x+1} f^{-1}(1)=a f(a)=1 \dfrac{3 a-1}{2 a+1}=1 3a-1=2 a+1 a=2 \therefore\ f^{-1}(1)=2 The function f is given by f(x)=10^{x}-2, then f^{-1}(2)=\cdots A. 88 B. 0.4 C. \ln 4 D. \log _{10} 4 Explanation f(x)=10^{x}-2 Let f^{-1}(2)=a f(a)=2 10^{a}-2=2 10^{a}=4 a=\log _{10} 4 \therefore\ f^{-1}(2)=\log _{10} 4 Given that f(x)=x^{2}, what is the domain of f for which f^{-1} exists? A. \{x \mid x \neq 0, x \in \mathbb{R}\} B. \{x \mid x>0, x \in \mathbb{R}\} C.\{x \mid x \ge 0, x \in \mathbb{R}\} D. \{x \mid x <0, x \in \mathbb{R}\} Explanation f^{-1} exists if and only if f is a one to one function. f(x) is one to one only when x \ge 0. \therefore \operatorname{dom}(f)=\{x \mid x \ge 0, x \in \mathbb{R}\}. If f(x)=x^{2} and g(x)=2 x,(f \circ g)\left(-\dfrac{1}{2}\right)=\ldots A. 1 B. 0 C. -1 D. \dfrac{1}{4} Explanation f(x)=x^{2} g(x)=2 x (f \circ g)\left(-\dfrac{1}{2}\right) =f\left(g\left(-\dfrac{1}{2}\right)\right) =f\left(2\left(-\dfrac{1}{2}\right)\right) =f(-1) =(-1)^{2} =1 If f(x)=x^{2} and g(x)=\dfrac{2 x+1}{x-4}, what is the domain of g\circ f ? A. \{-2,2\} B. \mathbb{R} \smallsetminus\{4\} C. \mathbb{R} \smallsetminus\{\pm 2\} D. \mathbb{R} Explanation \begin{aligned} f(x)&=x^{2} \\\\ g(x)&=\dfrac{2 x+1}{x-4} \\\\ (g \circ f)(x)&=g(f(x)) \\\\ &=g\left(x^{2}\right)\\\\ &=\dfrac{2 x^{2}+1}{x^{2}-4} \\\\ (g \circ f)(x) &\text { exists when } \\\\ x^{2}-4 &\neq 0 \\\\ x^{2} &\neq 4 \\\\ x &\neq \pm 2 \\\\ \therefore\ \operatorname{dom}(g \circ f)&=\mathbb{R} \smallsetminus\{\pm 2\} \end{aligned} If g(x)=\dfrac{x+2}{2 x-1} and h(x)=2 x, what is the range of g \circ h ? A. \mathbb{R} B. \varnothing C.\mathbb{R} \smallsetminus\{2\} D. \mathbb{R} \smallsetminus\left\{\dfrac{1}{2}\right\} Explanation \begin{aligned} g(x)&=\dfrac{x+2}{2 x-1} \\\\ h(x)&=2 x \\\\ (g \circ h)(x) &=g(h(x))\\\\ &=g(2 x) \\\\ &=\dfrac{2 x+2}{4 x-1} \\\\ &=\dfrac{5 / 2}{4 x-1}+\dfrac{1}{2} \\\\ \therefore \operatorname{ran}(g \cdot f)&=\left\{y \mid y \neq \dfrac{1}{2}, y \in \mathbb{R}\right\} \end{aligned} The function f: A \rightarrow B is onto function then the range of f is A. A B. B C. subset of A D. subset of B Explanation A function f is onto function when range of f= codomain. If f is a function an a set A=\{1,2,3,4,5\} such that f=\{(1,2),(2,3),(3,4),(4, x),(5,5)\} is a one to function, then x=\ldots A. 5 B. 3 C. 2 D. 1 Explanation To be one to ove furction f, A must be related with 1. Submit answers Your Score: စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!