Processing math: 100%

Indefinite Integration

Antiderivative ဟာ Grade 12 သင်ရိုးတွင် ပြဌာန်းလာမည့် သင်ခန်းစာတစ်ခုဖြစ်ပါတယ်။ သင်ခန်းစာရှင်းလင်းချက်များကို ဒီနေရာမှာ ရေခဲ့ဖူးပါတယ်။ အဆိုပါ post နှင့် ယှဉ်တွဲလေ့လာပြီး အောက်ပါ လေ့ကျင့်ခန်းများကို လေ့လာ လေ့ကျင့်ကြည့်နိုင်ပါတယ်။ စဉ်ဆက်မပြတ် လေ့လာသင်ယူနိုင်ကြပါစေ။


Rules of Integration

 1. k dx=kx+c 2. f(x) dx=f(x)+c 3. xn dx=xn+1n+1+c 4. kf(x) dx=kf(x) dx 5. [f(x)±g(x)] dx=f(x) dx±g(x) dx
  1. Integrate each of the following with respect to x.
    (a) x3
    (b) 3x
    (c) 2x2
    (d) 12x
    (e) (3x+5) dx


  2. (a) x3 dx=x3+13+1+C=x44+C

    (b) 3x dx=3x dx=3x12 dx=3x12+112+1+C=2x32+C

    (c) 2x2 dx=2x2 dx=2x2+12+1+C=2x+C

    (d) 2x2 dx=121x12 dx=12x12 dx=12x12+112+1+C=x+C

    (e) (3x+5) dx=(3x) dx+(5) dx=3x22+5x+C

  3. Find each of the following indefinite integrals.

    (a) (3x1)(x+2) dx

    (b) (3x34x+3) dx

    (c) (6x24x2) dx

    (d) (51x+1x3) dx

    (e) x4+5x2x3 dx


  4. (a) (3x1)(x+2) dx=(3x2+5x2) dx=3x2 dx+5x dx2 dx=x3+5x222x+C

    (b)(3x34x+3)dx=3x3 dx4x dx+3 dx=3x3 dx4x12 dx+3 dx=3x444x3232+3x+C=34x483x32+3x+C

    (c)(6x24x2) dx=6x2 dx4x2 dx=6x2 dx4x2 dx=6x334x11+C=2x3+4x

     (d) (51x+1x3) dx=5 dxx12 dx+x3 dx=5xx1212+x22+C=5x2x+12x2+C

    (e)x4+5x2x3 dx=x42x3 dx+5x2x3 dx=12x dx+52x2 dx=12x22+52x11+C=14x252x+C

  5. Find each of the following indefinite integrals.

    (a) 3x25x2 dx

    (b) (3x1)25x4 dx

    (c) 3x7+x223x dx

    (d) (x3x)2 dx

    (e) (1+4x)(14x)dx

    (f) (3x+23x)2 dx


  6.  (a) 3x25x2 dx=3x2x25 dx=32x32 dx=32x1212+C=3x+C

     (b) (3x1)25x4 dx=9x26x+15x4 dx=95x2 dx65x3 dx+15x4 dx=95x1165x22+15x33+C=95x+65x2115x3+C

     (c) 3x7+x223x dx=3x723x dx+x223x dx=32x7x13 dx+12x2x13 dx=32x203 dx+12x53 dx=32x233233+12x8383+C=946x233+316x83+C

     (d) (x3x)2 dx=(x26xx+9x) dx=x2 dx6x32 dx+9x dx=x236x3232+9x22+C=13x24x32+92x2+C

     (e) (1+4x)(14x)dx=(1(4x)2) dx=(1x12) dx=1 dxx1/2 dx=xx3232+C=x23x32+C

     (f) (3x+23x)2 dx=(x13+2x13)2 dx=(x23+4+4x23) dx=x32 dx+4 dx+4x23 dx=x5252+4x+4x1313+C=25x52+4x+12x13+C

  7. The rate of change of A with respect to r is given by dAdr=4r+7. If A=12 when r=1,find A in terms of r.


  8.  dA dr=4r+7A= dA= dA dr dr=(4r+7) dr=4r dr+7 dr=2r2+7r+C When  r=1, A=12 12=2+7+C C=3. A=2r2+7r+3

  9. Given that the gradient of a curve is 2x2+7x and that the curve passes through the origin, determine the equation of the curve.


  10. Let the given curve be y.
     Gradient of the curve = dy dx=2x2+7xy= dy= dy dx dx=(2x2+7x) dx=23x3+72x2+C
    through the origin (0,0),
    0=32(0)3+72(0)2+CC=0
    Hence, the equation the curve is y=23x3+72x2

  11. A curve is such that dydx=k3x , where k is a constant and that it passes through the points (1,4) and (8,16). Find the equation of the curve.


  12. dy dx=k3xy= dy=dy dx dx=k3x dx=kx13 dx=3k4x43+C
    Since the curve passes through the point (1,4) and (8,16)
    4=3k4+c 3k+4C=16(1)16=3k4(8)43+C12k+C=16(2)
    Solving equatione (1) and (2),
    k=1615,c=165 y=45x43+165

  13. The gradient of a curve at the point (x,y) on the curve is given by x24x2. Given that the curve passes through the point (2,7), find the equation of the curve.


  14. dy dx=x24x2y= dy=dy dx dx=x24x2 dx=(14x2) dx=1 dx4x2 dx=x+4x+C
    Since the curve passes through the point (2,7), 7=2+42+C
    C=3
     y=x+4x+3

  15. A curve with dydx=kx+3, where k is a constant, passes through the point P(3,19). Given that the gradient of the normal to the curve at the point P is 115, find
    (i) the value of k,
    (ii) the equation of the curve,
    (iii) the coordinates of the turning point on the curve.


  16.  dy dx=kx+3gradient of normal at (3,19)=1151 dy dx|(3,19)=1151kx+3|(3,19)=1153k+3=15k=4 dy dx=4x+3
    y= dy= dy dx dx=(4x+3) dx=2x2+3x+C
    Since the curve passe through the point (3,19)
    19=2(3)2+3(3)+C19=18+9+CC=8 dy=2x2+3x8 At turning point,  dy dx=04x+3=0x=34y=2(34)2+3(34)8=738 The turning point is (34,738)

  17. The equation of a curve is such that dydx=1(x3)2+x. It is given that the curve passes through the point (2,7). Find the equation of the curve.


  18. dydx=1(x3)2+xy= dy=dydx=(1(x3)2+x) dx=1(x3)2 dx+x dx
    Since d dx(x3)=1,d(x3)= dx

    y=1(x3)2d(x3)+x dx=(x3)2d(x3)+x dx=1x3+12x2+c
    Since (2,7) lies on the curve,
    7=123+12(2)2+CC=4 y=12x21x3+4

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post