Cambridge Additional Mathematics : Exercise (7.2)

Two Circles Graph
Exercise 7.2
  1. Find the points of intersection of the line and the circle:
    (a) $y=4$ and $x^2+y^2-4 x-6 y+8=0$
    (b) $y=x-1$ and $x^2+y^2+5 x-y-6=0$
    (c) $y=2 x+3$ and $x^2+y^2-4 x+6 y-12=0$
    (d) $y=2 x+1$ and $x^2+y^2+5 x-3 y-12=0$
    $\begin{aligned} \textbf{(a) } &\text{Line: } y=4 \\ &\text{Circle: } x^2+y^2-4 x-6 y+8=0 \\ &\text{Substitute } y=4 \text{ into the circle equation:} \\ &x^2+(4)^2-4x-6(4)+8=0 \\ &x^2+16-4x-24+8=0 \\ &x^2-4x=0 \\ &x(x-4)=0 \\ &x=0 \text{ or } x=4 \\ &\text{Points of intersection: } (0,4) \text{ and } (4,4) \end{aligned}$

    $\begin{aligned} \textbf{(b) } &\text{Line: } y=x-1 \\ &\text{Circle: } x^2+y^2+5 x-y-6=0 \\ &\text{Substitute } y=x-1 \text{ into the circle equation:} \\ &x^2+(x-1)^2+5x-(x-1)-6=0 \\ &x^2+(x^2-2x+1)+5x-x+1-6=0 \\ &2x^2+2x-4=0 \\ &x^2+x-2=0 \\ &(x+2)(x-1)=0 \\ &x=-2 \text{ or } x=1 \\ &\text{If } x=-2, y=-2-1=-3 \implies (-2,-3) \\ &\text{If } x=1, y=1-1=0 \implies (1,0) \\ &\text{Points of intersection: } (-2,-3) \text{ and } (1,0) \end{aligned}$

    $\begin{aligned} \textbf{(c) } &\text{Line: } y=2x+3 \\ &\text{Circle: } x^2+y^2-4 x+6 y-12=0 \\ &\text{Substitute } y=2x+3 \text{ into the circle equation:} \\ &x^2+(2x+3)^2-4x+6(2x+3)-12=0 \\ &x^2+(4x^2+12x+9)-4x+12x+18-12=0 \\ &5x^2+20x+15=0 \\ &x^2+4x+3=0 \\ &(x+1)(x+3)=0 \\ &x=-1 \text{ or } x=-3 \\ &\text{If } x=-1, y=2(-1)+3=1 \implies (-1,1) \\ &\text{If } x=-3, y=2(-3)+3=-3 \implies (-3,-3) \\ &\text{Points of intersection: } (-1,1) \text{ and } (-3,-3) \end{aligned}$

    $\begin{aligned} \textbf{(d) } &\text{Line: } y=2x+1 \\ &\text{Circle: } x^2+y^2+5 x-3 y-12=0 \\ &\text{Substitute } y=2x+1 \text{ into the circle equation:} \\ &x^2+(2x+1)^2+5x-3(2x+1)-12=0 \\ &x^2+(4x^2+4x+1)+5x-6x-3-12=0 \\ &5x^2+3x-14=0 \\ &(5x-7)(x+2)=0 \\ & x=7/5 \text{ or } x=-2 \\ &\text{If } x=7/5, y=2(7/5)+1 = 19/5 \\ &\text{If } x=-2, y=2(-2)+1 = -3 \\ &\text{Points of intersection: } (7/5,19/5) \text{ and } (-2,-3) \end{aligned}$
  2. By considering the radii of each circle and the distance between their centres, determine whether each pair of circles intersect, touch or do not intersect.
    (a) $ x^2+y^2=25$ and $x^2+y^2-15 x+8 y-75=0$
    (b) $ x^2+y^2=16$ and $x^2+y^2+3 x-5 y-6=0$
    (c) $x^2+y^2=25$ and $x^2+y^2-24 x-18 y+125=0$
    (d) $(x-8)^2+y^2=4$ and $(x-2)^2+(y+5)^2=1$
    (e) $ x^2+(y-3)^2=9$ and $(x-8)^2+(y-5)^2=144$
    $\begin{aligned} \textbf{(a) } &C_1: x^2+y^2=25\\ & \text{Centre } (0,0),\quad r_1=5 \\ &C_2: x^2+y^2-15 x+8 y-75=0 \\ & \text{Centre } \left(\frac{15}{2}, -4\right),\quad r_2=\sqrt{\left(\frac{15}{2}\right)^2+(-4)^2-(-75)}=\sqrt{\frac{589}{4}} \\ &d = \sqrt{\left(\frac{15}{2}-0\right)^2+(-4-0)^2} =8.5 \\ &r_1+r_2 = 5+\frac{\sqrt{589}}{2} \approx 17.11 \\ &|r_1-r_2| = \left|5-\frac{\sqrt{589}}{2}\right| \approx 7.11 \\ &\text{Since } |r_1-r_2| < d < r_1+r_2, \text{ the circles intersect.} \\[10pt] \end{aligned}$
    $\begin{aligned} \textbf{(b) } &C_1: x^2+y^2=16 \\ & \text{Centre } (0,0), \quad r_1=4 \\ &C_2: x^2+y^2+3 x-5 y-6=0 \\ & \text{Centre } \left(-\frac{3}{2}, \frac{5}{2}\right),\quad r_2=\sqrt{\left(-\frac{3}{2}\right)^2+\left(\frac{5}{2}\right)^2-(-6)}= \sqrt{\frac{29}{2}} \\ &d = \sqrt{\left(-\frac{3}{2}-0\right)^2+\left(\frac{5}{2}-0\right)^2} =\sqrt{\frac{17}{2}} \approx 2.92 \\ &r_1+r_2 = 4+\sqrt{\frac{29}{2}} \approx 7.81 \\ &|r_1-r_2| = \bigg|4-\sqrt{\frac{29}{2}}\bigg| \approx 0.19 \\ &\text{Since } |r_1-r_2| < d < r_1+r_2, \text{ the circles intersect.} \end{aligned}$

    $\begin{aligned} \textbf{(c) } &C_1: x^2+y^2=25\\ & \text{Centre } (0,0), \quad r_1=5 \\ &C_2: x^2+y^2-24 x-18 y+125=0 \\ &\text{Centre } (12, 9),\quad r_2=\sqrt{12^2+9^2-125}=10 \\ &d = \sqrt{(12-0)^2+(9-0)^2} =15 \\ &r_1+r_2 = 5+10=15 \\ &\text{Since } d = r_1+r_2, \text{ the circles touch externally.} \end{aligned}$

    $\begin{aligned} \textbf{(d) }&C_1: (x-8)^2+y^2=4\\ & \text{Centre } (8,0),\quad r_1=2 \\ &C_2: (x-2)^2+(y+5)^2=1 \\ & \text{Centre } (2,-5),\quad r_2=1 \\ &d = \sqrt{(8-2)^2+(0-(-5))^2} = \sqrt{61} \\ &r_1+r_2 = 2+1=3 \\ &\text{Since } d > r_1+r_2 , \text{ the circles do not intersect.}\\ \end{aligned}$

    $\begin{aligned} \textbf{(e) } &C_1: x^2+(y-3)^2=9\\ &\text{Centre } (0,3),\quad r_1=3 \\ &C_2: (x-8)^2+(y-5)^2=144 \\ & \text{Centre } (8,5),\quad r_2=12 \\ &d = \sqrt{(8-0)^2+(5-3)^2} = \sqrt{8^2+2^2}=\sqrt{64+4}=\sqrt{68} \\ &r_1+r_2 = 3+12=15 \\ &|r_1-r_2| = |3-12|=9 \\ &\text{Since } d < |r_1-r_2| , \text{ the smaller circle is inside the larger circle and they do not intersect.} \end{aligned}$
  3. The line $y=x-3$ intersects the circle $(x-3)^2+(y+2)^2=20$ at two points $P$ and $Q$. Find the length of $P Q$.
    Line: $y=x-3$

    Circle: $(x-3)^2+(y+2)^2=20$

    At the points of intersection of the line and circle,

    $\begin{aligned} & (x-3)^2+(x-3+2)^2=20 \\ & x^2-6 x+9+x^2-2 x+1-20=0 \\ & 2 x^2-8 x-10=0 \\ & x^2-4 x-5=0 \\ & (x+1)(x-5)=0 \\ & x=-1 \text{ or } x=5 \\ & x=-1 \implies y=-4 \\ & x=5 \implies y=2 \end{aligned}$

    Hence, $P$ and $Q$ have coordinates $(-1,-4)$ and $(5,2)$.

    $P Q=\sqrt{(5+1)^2+(2+4)^2}=6 \sqrt{2}$
  4. Explain why the line $4 y=x+26$ is a tangent to the circle $x^2+y^2+10 x-2 y+9=0$ and find the coordinates of the point where the line touches the curve.
    Line: $4 y=x+26 \implies x=4 y-26$

    Circle: $x^2+y^2+10 x-2 y+9=0$

    At the point of intersection of the line and circle,

    $\begin{aligned} & (4 y-26)^2+y^2+10(4 y-26)-2 y+9=0 \\ & 16 y^2-208 y+676+y^2+40 y-260-2 y+9=0 \\ & 17 y^2-170 y+425=0 \end{aligned}$
    $\begin{aligned} & y^2-10 y+25=0 \\ & (y-5)^2=0\implies y=5\\ \therefore\quad& x=-6 \end{aligned}$

    Hence the line intersects the circle at only one point $(-6,5)$.

    Thus, the line is tangent to the circle.
  5. Explain why the circles $(x+7)^2+(y+2)^2=1$ and $(x+7)^2+(y+5)^2=16$ touch at one point. Determine whether they touch internally or externally and find the coordinates of the point at which they touch.
    $\begin{aligned} &\text{Circle 1: } (x+7)^2 + (y+2)^2 = 1\implies \text{centre } C_1 = (-7, -2),\quad r_1 = 1 \\ &\text{Circle 2: } (x+7)^2 + (y+5)^2 = 16 \implies \text{centre } C_2 = (-7, -5),\quad r_2 = 4 \\ &\text{Distance between centres: } d = \sqrt{(-7 + 7)^2 + (-2 + 5)^2} = \sqrt{0 + 9} = 3 \\ &\text{Difference of radii: } |r_1 - r_2| = |1 - 4| = 3 \\ &\text{Since } d = |r_1 - r_2|, \text{the circles touch internally}. \\ &\text{At the point of contact, } \\ &(y+5)^2 -(y+2)^2 = 15\\ &y^2+10y+25-y^2-4y-4=15\\ &y=-1\\ &\text{Since the two circles lie on the same vertical line $x=-7$, the point of contact is } (-7, -1) \end{aligned}$
  6. The circles $(x-10)^2+(y-5)^2=25$ and $(x-20)^2+(y-10)^2=100$ intersect at the points $P$ and $Q$.
    1. Find the length of the line $P Q$.
    2. Find the equation of the common chord $P Q$.
    Method 1

    Circle 1: $\quad(x-10)^2+(y-5)^2=25$

    centre: $(10,5)$, radius $=5$

    Circle 2: $\quad(x-20)^2+(y-10)^2=100$

    centre: $(20,10)$, radius $=10$

    Let the centre of the two circles be $M(10,5)$ and $N(20,10)$ and the radii of the circles be $r_1=5 $ and $r_2=10 $.

    $M N=\sqrt{(20-10)^2+(10-5)^2}=5 \sqrt{5} $

    Let the point of intersection of $P Q$ and $MN$ be $R$.

    Let $MR=k$.

    $\therefore \quad R N=5 \sqrt{5}-k$

    $\begin{aligned} \therefore \quad & P R^2=5^2-k^2 \text{ or } \\ & P R^2=10^2-(5 \sqrt{5}-k)^2 \\ \therefore \quad & 5^2-k^2=10^2-(5 \sqrt{5}-k)^2 \\ & 25-k^2=100-125+10 \sqrt{5} k-k^2 \\ \end{aligned}$
    $\begin{aligned} & 10 \sqrt{5} k=50 \implies k=\sqrt{5} \\ \therefore \quad& P R^2=25-5=20 \implies P R=2 \sqrt{5} \\ \therefore\quad & P Q=2 P R=4 \sqrt{5} \end{aligned}$

    gradient of $M N=\frac{10-5}{20-10}=\frac{1}{2}$

    $\therefore\quad $ gradient of $P Q=-2\quad (\because \ P Q \perp \mathrm{MN})$

    $\frac{M R}{R N}=\frac{\sqrt{5}}{4 \sqrt{5}}=\frac{1}{4}$

    By section formula,

    $ R=\left(\frac{4 (10)+20}{5}, \frac{4 (5)+10}{5}\right)=(12,6)$

    Equation of $PQ$ is

    $y-6 =-2(x-12) \implies y =30-2 x .$

    Method 2

    $\begin{aligned} & \text{Circle} 1: (x-10)^2+(y-5)^2=25\\ & x^2-20 x+100+y^2-10 y+25-25=0 \\ & x^2+y^2-20 x-10 y+100=0 \ldots(1) \end{aligned}$

    $\begin{aligned} & \text{Circle} 2:(x-20)^2+(y-10)^2=100\\ & x^2-40 x+400+y^2-20 y+100-100=0 \\ & x^2+y^2-40 x-20 y+400=0 \ldots(2) \end{aligned}$

    At the points of intersection two circles,

    $\begin{aligned} & x^2+y^2-20 x-10 y+100=x^2+y^2-40 x-20 y+400 \\ & 10 y=300-20 x \implies y=30-2 x \ldots(3) \end{aligned}$

    Substituting $y=30-2 x$ in equation ( 1 )

    $\begin{aligned} & x^2+(30-2 x)^2-20 x-10(30-2 x)+100=0 \\ & x^2+300-120 x+4 x^2-20 x-300+20 x+100= 0\\ & 5 x^2-120 x+700=0 \\ & x^2-24 x+140=0 \\ & (x-10)(x-14)=0 \\ & x=10 \text{ or } x=14 \\ & x=10 \implies y=10 \\ & x=14 \implies y=2 . \\ & P Q=\sqrt{(14-10)^2+(2-10)^2}=4 \sqrt{5} \end{aligned}$

    Equation of $P Q: \quad y=30-2 x$.
  7. Show that the line $y=2 x-1$ and the circle $x^2+y^2+15 x-11 y+9=0$ do not intersect.
    $\begin{aligned} &\text{Substitute } y = 2x - 1 \text{ into the circle equation:} \\ &x^2 + (2x - 1)^2 + 15x -11(2x -1) + 9 = 0 \\ &x^2 + 4x^2 - 4x + 1 + 15x -22x + 11 + 9 = 0 \\ & 5x^2 -11x + 21 = 0 \\ &\text{Discriminant } = (-11)^2 - 4 (5) ( 21) = -299 <0\\ \therefore \quad & \text{The equation has no real solution}\\ \therefore \quad &\text{The line and circle do not intersect.} \end{aligned}$
  8. The equation of a circle is $x^2+y^2-6 x-8 y=0$.
    1. Show that the point $P(7,7)$ lies on this circle.
    2. Find the equation of the tangent to the circle at the point $P$.
    $\begin{aligned} \textbf{(a) }&x^2+y^2-6 x-8 y=0 \\ &\text{When $x=7$ and $y=7$, }\\ &7^2+7^2-6 (7)-8 (7)=0= 25 \quad \text{(Correction: $49+49-42-56=0$)} \\ \therefore \quad &\text{the point } P(7,7) \text{ lies on the circle}\\ &x^2+y^2-6 x-8 y=0 \\ &x^2-6 x+9+y^2-8 y+16=25 \\ &(x - 3)^2 + (y - 4)^2 = 25 \\ &\text{Centre is } (3, 4),\quad \text{radius } r = 5\\ &\text{Slope of radius } CP = \frac{7 - 4}{7 - 3} = \frac{3}{4} \\ &\text{Slope of tangent } = -\frac{4}{3} \\ &\text{Using point-slope form} \\ &y - 7 = -\frac{4}{3}(x - 7) \\ &3y - 21 = -4x + 28 \\ &4x + 3y = 49 \\ &\text{Equation of tangent is } 4x + 3y = 49 \end{aligned}$
  9. The line $2 x+y=6$ intersects the circle $x^2+y^2-12 x-8 y+27=0$ at the points $A$ and $B$.
    1. Find the coordinates of the points $A$ and $B$.
    2. Find the equation of the perpendicular bisector of $A B$.
    3. The perpendicular bisector of $A B$ intersects the circle at the points $P$ and $Q$. Find the exact coordinates of $P$ and $Q$.
    4. Find the exact area of quadrilateral $A P B Q$.
    Line: $2 x+y=6 \implies y=6-2 x$

    Circle: $x^2+y^2-12 x-8 y+27=0$

    (a) At the point of intersection of the line and circle,

    $\begin{aligned} & x^2+(6-2 x)^2-12 x-8(6-2 x)+27=0 \\ & x^2+36-24 x+4 x^2-12 x-48+16 x+27=0 \\ & 5 x^2-20 x+15=0 \\ & x^2-4 x+3=0 \\ & (x-1)(x-3)=0 \\ & x=1, x=3 \\ & x=1 \implies y=4 \\ & x=3 \implies y=0 \end{aligned}$

    Thus, $A$ and $B$ have coordinates $(1,4)$ and $(3,0)$ respectively.

    Let $M$ be the midpoint of $A B$ and $l$ be the perpendicular bisector of $A B$.

    $\therefore\ M=\left(\frac{1+3}{2}, \frac{4+0}{2}\right)=(2,2)$

    gradient of $A B=\frac{4-0}{1-3}=-2$

    gradient of $l=\frac{1}{2}$

    Equation of $l$ : $y-2=\frac{1}{2}(x-2) \implies 2 y-x=2 \text{ (or) } x=2 y-2$

    At the point of intersection of $l$ and circle,

    $\begin{aligned} & (2 y-2)^2+y^2-12(2 y-2)-8 y+27=0 \\ & 4 y^2-8 y+4+y^2-24 y+24-8 y+27=0 \\ & 5 y^2-40 y+55=0\\ & y^2-8 y+11=0 \\ & y^2-8 y+16=5 \\ & (y-4)^2=5 \end{aligned}$

    $\begin{aligned} & y=4 \pm \sqrt{5} \\ & y=4-\sqrt{5}, x=6-2 \sqrt{5} \\ & y=4+\sqrt{5}, x=6+2 \sqrt{5} \end{aligned}$

    P and Q have coordinates $(6-2 \sqrt{5}, 4-\sqrt{5}) \text{ and }(6+2 \sqrt{5}, 4+\sqrt{5}) $.

    The circle $x^2+y^2-12 x-8 y+27=0$ has radius $v=\sqrt{36+16-27}=5$.

    Since $P Q$ is the diameter of the circle, $P Q=10$.

    $A B=\sqrt{(3-1)^2+(0-4)^2}=2 \sqrt{5}$

    area of $A P B Q=\frac{1}{2} \times A B \times P Q=\frac{1}{2} \times 2 \sqrt{5} \times 10=10 \sqrt{5}$
  10. Show that these pairs of circles touch each other and find the coordinates of the point where they touch. In each case, sketch the circles to show how they touch.
    1. $x^2+y^2-8 x-4 y+19=0$ and $(x-5)^2+(y-2)^2=4$
    2. $x^2+y^2+6 x-4 y+3=0$ and $x^2+y^2-12 x+2 y-3=0$
    $\begin{aligned} \textbf{(a) } & \text{Circle 1: } x^2 + y^2 - 8x - 4y + 19 = 0 \\ &x^2 - 8x+4^2 + y^2- 4y+2^2 = -19+4^2+2^2 \\ & (x - 4)^2 + (y - 2)^2 = 1 \\ & \text{centre } (4,2),\quad r_1= 1 \\ &\text{Circle 2: } (x-5)^2+(y-2)^2=4\\ & \text{Circle 2: centre } (5,2), \quad r_2= 2\\ & \text{Distance between centres: } d = \sqrt{(5 - 4)^2 + (2 - 2)^2} = 1 \\ & r_1+r_2= 1 + 2 = 3,\quad |r_1-r_2| = |2 - 1 |= 1 \\ & \text{Since $d= |r_1-r_2|$ they touch internally}\\ & \text{At the point of contact} \\ &(x-5)^2 -(x - 4)^2=3\\ &9-2x=3\implies x=3\\ &\text{Since the two circles lies on the same horizontal line $y=2$, the point of contact is } (3, 2)\\[10pt] \textbf{(b) } & \text{Circle 1: }x^2 + y^2 + 6x - 4y + 3 = 0 \implies (x + 3)^2 + (y - 2)^2 = 10 \\ & \text{Centre } (-3,2), \quad r_1= \sqrt{10} \\ & \text{Circle 2: }x^2 + y^2 - 12x + 2y - 3 = 0 \implies (x - 6)^2 + (y + 1)^2 = 40 \\ & \text{Centre } (6,-1), \quad r_2=\sqrt{40}=2 \sqrt{10}\\ & \text{Distance between centres:} \\ & d=\sqrt{(6 + 3)^2 + (-1 - 2)^2} = \sqrt{90}=3\sqrt{10} \\ \end{aligned}$

    $\begin{aligned} &r_1+r_2= \sqrt{10}+2 \sqrt{10}=3\sqrt{10}\\ & \text{So, circles touch externally} \\ & \text{At the point of contact, } \\ & 18 x-6 y+6=0 \\ & y=3 x+1\\ &\text{Substitute } y=3 x+1 \text{ in Circle } 1 \text{ equation }\\ & x^2+(3 x+1)^2+6 x-4(3 x+1)+3=0 \\ & x^2+9 x^2+6 x+1+6 x-12 x-4+3=0 \\ & 10 x^2=0\implies x=0 \implies y=1\\ \therefore \quad&\text{ the point of contact of the two circles is } (0, 1) \end{aligned}$
  11. Find the set of values of $m$ for which the line $y=m x+3$ intersects the circle $x^2+y^2-10 x-8 y+28=0$ at two distinct points.
    Line: $y=m x+3$

    Circle: $x^2+y^2-10 x-8 y+28=0$

    At the point of intersection the line and circle,

    $\begin{aligned} & x^2+(m x+3)^2-10 x-8(m x+3)+28=0 \\ & x^2+m^2 x^2+6 m x+9-10 x-8 m x-2 y+28=0 \\ & \left(m^2+1\right) x^2-2(m+5) x+13=0 \end{aligned}$

    Since the line intersects the circle at two distinct points, discriminant $>0$

    $\begin{aligned} & 4(m+5)^2-4\left(m^2+1\right)(13)>0 \\ & -6 m^2+5 m+6>0 \implies 6 m^2-5 m+6<0 \implies (3 m+2)(2 m-3)<0 \implies -\frac{2}{3} "images/7.2_no-11.png" alt="Intersection values graph">
  12. Two circles have the following properties:
    • the $x$-axis is a common tangent to the circles
    • the point $(14,2)$ lies on both circles
    • the centre of each circle lies on the line $x+2 y=28$
    Find the equation of each circle.
    $\begin{aligned} &\text{Let the center of the first circle be } (x, y).\\ &\text{Since the $x$-axis is tangent, radius } = y.\\ &\text{Point } (14,2) \text{ lies on the circle: } \sqrt{(14 - x)^2 + (2 - y)^2} = y \\ &(14 - x)^2 + (2 - y)^2 = y^2 \\ &196 - 28x + x^2 + 4 - 4y + y^2 = y^2 \\ &x^2 - 28x + 200 - 4y = 0 \quad\cdots(1) \\ &\text{Centre lies on } x + 2y = 28 \implies x = 28 - 2y \quad\cdots(2)\\ &\text{Substitute (2) into (1):} \\ &(28 - 2y)^2 - 28(28 - 2y) + 200 - 4y = 0 \\ & 784 - 112y + 4y^2 - 784 + 56y + 200 - 4y = 0 \\ & 4y^2 - 60y + 200 = 0 \implies y^2 - 15y + 50 = 0 \\ &y = 5 \text{ or } 10 \\ &\text{If } y = 5, x = 28 - 2(5) = 18; \quad \text{If } y = 10, x = 28 - 2(10) = 8 \\ \therefore\quad & \text{Centres are } (18,5) \text{ and } (8,10)\\ &\text{The equations of the circles are } (x-18)^2+(y-5)^2=25 \text{ and }(x-8)^2+(y-10)^2=100. \end{aligned}$
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم