Loading [MathJax]/jax/output/HTML-CSS/jax.js

Trigonometry and Properties of Quadratic Equation

If tanA and tanB are the roots of the equation x2px+q=0, where p and q are real constants, find the value of sin2(A+B) in terms of p and  q.

Solution

                 tanA and tanB are the roots of the equation x2px+q=0,

             x2px+q=(xtanA)(xtanB)

             x2px+q=x2(tanA+tanB)x+tanAtanB
         
             tanA+tanB=p and tanAtanB=q

             tanA+tanB1tanAtanB=p1q

             tan(A+B)=p1q

             sin(A+B)cos(A+B)=p1q

             cos(A+B)=1qpsin(A+B)

                 Since sin2(A+B)+cos2(A+B)=1

                 sin2(A+B)+(1qp)2sin2(A+B)=1

                 sin2(A+B)(1+(1q)2p2)=1

             sin2(A+B)=p2p2+(1q)2
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم