If tanA and tanB are the roots of the equation x2−px+q=0, where p and q are real constants, find the value of sin2(A+B) in terms of p and q.
Solution
tanA and tanB are the roots of the equation x2−px+q=0,
∴x2−px+q=(x−tanA)(x−tanB)
∴x2−px+q=x2−(tanA+tanB)x+tanA⋅tanB
∴tanA+tanB=p and tanA⋅tanB=q
∴tanA+tanB1−tanAtanB=p1−q
∴tan(A+B)=p1−q
∴sin(A+B)cos(A+B)=p1−q
∴cos(A+B)=1−qp⋅sin(A+B)
Since sin2(A+B)+cos2(A+B)=1
sin2(A+B)+(1−qp)2sin2(A+B)=1
sin2(A+B)(1+(1−q)2p2)=1
∴sin2(A+B)=p2p2+(1−q)2
Solution
tanA and tanB are the roots of the equation x2−px+q=0,
∴x2−px+q=(x−tanA)(x−tanB)
∴x2−px+q=x2−(tanA+tanB)x+tanA⋅tanB
∴tanA+tanB=p and tanA⋅tanB=q
∴tanA+tanB1−tanAtanB=p1−q
∴tan(A+B)=p1−q
∴sin(A+B)cos(A+B)=p1−q
∴cos(A+B)=1−qp⋅sin(A+B)
Since sin2(A+B)+cos2(A+B)=1
sin2(A+B)+(1−qp)2sin2(A+B)=1
sin2(A+B)(1+(1−q)2p2)=1
∴sin2(A+B)=p2p2+(1−q)2
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!