Loading [MathJax]/jax/output/HTML-CSS/jax.js

Answer for 2019 Sample Question : Section (B)


ဒီေနရာမွာ တင္ေပးခဲ့ေသာ Section (B) ေမးခြန္းရဲ့ အေျဖျဖစ္ပါတယ္။ Section (A) ရဲ့ အေျဖကိုေတာ့ ဒီေနရာမွာ တင္ေပးခဲ့ပါတယ္။ Section (C) အေျဖကိုလည္း ဆက္လက္ တင္ေပးသြားပါ့မယ္။ 

Section (B)
Solution

6.    (a) A function f is defined by f:xxp+q,p0. If f(8)=1 andf1(2)=2, show that p2+q2=10.
(5 marks)

Show/Hide Solution
            f(x)=xp+q,p0

            f(8)=1,

          8p+q=1       (1)

            f1(2)=2   f(2)=2

          2p+q=2        (2)

       By Equation(1)  Equation(2)

            6p=3p=2

          82+q=1q=3

          p2+q2= 22+(3)2=10


6. (b)  Given that the (p+1)th term of an A.P. is twice the (q+1)th term. Prove that(3p+1)th term is twice the (p+q+1)th term.
(5 marks)

Show/Hide Solution
    Let the first term be a and     the common difference be d.    By the problem,    up+1=2uq+1  a+(p+11)d=2[a+(q+11)d]    a+pd=2a+2qd  a=pd2qd  u3p+1=a+(3p+11)d                 =pd2qd+3pd                 =4pd2qd  2up+q+1=2a+2(p+q+11)d                   =2pd4qd+2pd+2qd                   =4pd2qd  u3p+1=2up+q+1


7.    (a) Find the term in x2 and x3 in the expansion of  (2x+1)5. Hence find the term in x3 in the expansion of  (x+3)(2x+1)5.
(5 marks)

Show/Hide Solution
Binomial : (2x+1)5(r+1)thterm=5Cr25rx5rFor x2,5r=2r=3the term in x2=5C322x2=40x2For x3,5r=3r=2the term in x3=5C223x3=80x3the term in x3 in the expansion of  (x+3)(2x+1)5=x(40x2)+3(80x3)=280x3


7.    (b) Let J+ be the set of all positive integers. Is the operation defined by xy=x2+3y a binary operation on  J+? If it is a binary operation, solve the equation (k5)(3k)=3k+1
(5 marks)

Show/Hide Solution
  xy=x2+3y,x,yJ+x2J+ and 3yJ+x2+3yJ+xyJ+Closure property is satisfied. is a binary operation.   (k5)(3k)=3k+1   (k2+15)(9+3k)=3k+1   k23k+6=3k+1   k26k+5=0   (k1)(k5)=0k=1 or k=5


8.    (a) If k+4,k and 2k15 where k>0 are the first three terms of a geometric progression, find the value of k. Hence find the first term and the common ratio and determine whether the sum to infinity exists or not. Find the sum to infinity of the progression if exists.
(5 marks)

Show/Hide Solution
   k+4, k, 2k15 is a G.P.

kk+4=2k15k

2k27k60=k2k27k60=0(k+5)(k12)=0k=5 or k=12   Since k>0, k=5 is impossible.k=12.The terms of the G.P. are 16, 12, 9... .

a=16, r=1216=34

|r|=|34|=34<1.

The sum to infinity exists.

S=a1r

         =16134

         =64


8.    (b) Find the solution set in R of the in equations (x+2)2>2x+7 and illustrate it on the number line.
(5 marks)

Show/Hide Solution
    (x+2)2>2x+7    x2+4x+4>2x+7    x2+2x3>0    Let y=x2+2x3     When y=0, x2+2x3=0.    (x+3)(x1)=0  x=3 or x=1  The graph cuts the x axis at (3,0) and (1,0).    When x=0, y=3.  The graph cuts the y axis at (0,3).


  Solution set={x|x<3 or x>1}.

Number Line


9.     (a) Given that when f(x)=6x3+3x2+ax+b, where a and b are constants, is divided by (x+1) the remainder is 45, show that ba=48. Given also that (2x+1) is a factor of f(x), find the value of a and the  of b. Hence factorise f(x) completely.
(5 marks)

Show/Hide Solution
   f(x)=6x3+3x2+ax+b   When f(x) is divided by x+1,the remainder is 45.f(1)=456(1)3+3(1)2+a(1)+b=456+3a+b=45ba=48           (1)   Since 2x+1 is a factor of f(x), 

f(12)=0

6(12)3+3(12)2+a(12)+b=0

   34+34a2+b=0

 2ba=0          (2)   By Equation (2)  Equation(1), b=48.48a=48a=96f(x)=6x3+3x296x48

                          3x2           482x+1¯)6x3+3x296x486x3+3x2_              96x48                96x48_                               0

f(x)=(2x+1)(3x248)             =3(2x+1)(x216)             =3(2x+1)(x+4)(x4)  


9.     (b) If A=(2334) show that A+A12I=O where I is a unit matrix of order 2.
(5 marks)

Show/Hide Solution
        A=(2334)

      detA=8(9)=10,      A1 exists.

      A1=(4332)

      A+A12I

    =  (2334)+(4332)2(1001)

    =  (2334)+(4332)+(2002)

    =  (2+42333+3422)

    =  (0000)

    =  O      A+A12I=O


10.    (a) The matrices P,Q and R such that P=(2132), Q=(1021) and R=PQ. Verify that Q1P1=R1.
(5 marks)

Show/Hide Solution
   P=(2132),Q=(1021)

   R=PQ     [given]

R=(2132)(1021)

R=(2+20+13+40+2)=(0112)

   detP=43=10, hence P1exists.   detQ=10=10, hence Q1exists.   detR=01=10, hence R1exists.

P1=1detP(2132)=11(2132)=(2132)

   Q1=1detQ(1021)=11(1021)=(1021)

   R1=1detR(2110)=11(2110)=(2110)

Q1P1=(1021)(2132)

Q1P1=(2+01+0432+2)=(2110)

Q1P1=R1


10.    (b) The probability that a student will receive an A,B,C or D grade are 0.3, 0.38, 0.22 and 0.1 respectively. What is the probability that student will receive

     (i) at least B grade.

     (ii) at most C grade.

     (iii) not an A grade.

     (iv) B or C grade.

(5 marks)

Show/Hide Solution
      P(A grade)=0.3      P(B grade)=0.38      P(C grade)=0.22      P(D grade)=0.1(i)   P(at least B grade)=P(A grade or B grade)                                        =P(A grade) + P(B grade)                                        =0.3+0.38                                          =0.68(ii)  P(at most C grade)=P(C grade or D grade)                                        =P(C grade) + P(D grade)                                        =0.22+0.1                                        =0.32(iii) P(not an A grade)=1P(A grade)                                        =10.3                                        =0.7(iv) P(B or C grade)=P(B grade) + P(C grade)                                   =0.38+0.22                                   =0.6


စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم