ဒီေနရာမွာ တင္ေပးခဲ့ေသာ Section (B) ေမးခြန္းရဲ့ အေျဖျဖစ္ပါတယ္။ Section (A) ရဲ့ အေျဖကိုေတာ့ ဒီေနရာမွာ တင္ေပးခဲ့ပါတယ္။ Section (C) အေျဖကိုလည္း ဆက္လက္ တင္ေပးသြားပါ့မယ္။
Section (B)
Solution
6. (a) A function f is defined by f:x↦xp+q,p≠0. If f(8)=1 andf−1(−2)=2, show that p2+q2=10.
(5 marks)
Show/Hide Solution
f(x)=xp+q,p≠0
f(8)=1,
∴ 8p+q=1 −−−−−(1)
f−1(−2)=2∴ f(2)=−2
∴ 2p+q=−2 −−−−−−(2)
By Equation(1) − Equation(2)
6p=3⇒p=2
∴ 82+q=1⇒q=−3
∴ p2+q2= 22+(−3)2=10
f(8)=1,
∴ 8p+q=1 −−−−−(1)
f−1(−2)=2∴ f(2)=−2
∴ 2p+q=−2 −−−−−−(2)
By Equation(1) − Equation(2)
6p=3⇒p=2
∴ 82+q=1⇒q=−3
∴ p2+q2= 22+(−3)2=10
6. (b) Given that the (p+1)th term of an A.P. is twice the (q+1)th term. Prove that(3p+1)th term is twice the (p+q+1)th term.
(5 marks)
Show/Hide Solution
Let the first term be a and the common difference be d. By the problem, up+1=2uq+1∴ a+(p+1−1)d=2[a+(q+1−1)d] a+pd=2a+2qd∴ a=pd−2qd∴ u3p+1=a+(3p+1−1)d =pd−2qd+3pd =4pd−2qd∴ 2up+q+1=2a+2(p+q+1−1)d =2pd−4qd+2pd+2qd =4pd−2qd∴ u3p+1=2up+q+1
7. (a) Find the term in x2 and x3 in the expansion of (2x+1)5. Hence find the term in x3 in the expansion of (x+3)(2x+1)5.
(5 marks)
Show/Hide Solution
Binomial : (2x+1)5(r+1)thterm=5Cr25−rx5−rFor x2,5−r=2⇒r=3∴the term in x2=5C322x2=40x2For x3,5−r=3⇒r=2∴the term in x3=5C223x3=80x3∴the term in x3 in the expansion of (x+3)(2x+1)5=x(40x2)+3(80x3)=280x3
7. (b) Let J+ be the set of all positive integers. Is the operation ⊙ defined by x⊙y=x2+3y a binary operation on J+? If it is a binary operation, solve the equation (k⊙5)−(3⊙k)=3k+1
(5 marks)
Show/Hide Solution
x⊙y=x2+3y,x,y∈J+∴x2∈J+ and 3y∈J+∴x2+3y∈J+∴x⊙y∈J+∴Closure property is satisfied.∴⊙ is a binary operation. (k⊙5)−(3⊙k)=3k+1 (k2+15)−(9+3k)=3k+1 k2−3k+6=3k+1 k2−6k+5=0 (k−1)(k−5)=0∴k=1 or k=5
8. (a) If k+4,k and 2k−15 where k>0 are the first three terms of a geometric progression, find the value of k. Hence find the first term and the common ratio and determine whether the sum to infinity exists or not. Find the sum to infinity of the progression if exists.
(5 marks)
Show/Hide Solution
k+4, k, 2k−15 is a G.P.
∴kk+4=2k−15k
∴2k2−7k−60=k2∴k2−7k−60=0∴(k+5)(k−12)=0∴k=−5 or k=12 Since k>0, k=−5 is impossible.∴k=12.∴The terms of the G.P. are 16, 12, 9... .
∴a=16, r=1216=34
∴|r|=|34|=34<1.
∴The sum to infinity exists.
∴S=a1−r
=161−34
=64
∴kk+4=2k−15k
∴2k2−7k−60=k2∴k2−7k−60=0∴(k+5)(k−12)=0∴k=−5 or k=12 Since k>0, k=−5 is impossible.∴k=12.∴The terms of the G.P. are 16, 12, 9... .
∴a=16, r=1216=34
∴|r|=|34|=34<1.
∴The sum to infinity exists.
∴S=a1−r
=161−34
=64
8. (b) Find the solution set in R of the in equations (x+2)2>2x+7 and illustrate it on the number line.
(5 marks)
Show/Hide Solution
9. (a) Given that when f(x)=6x3+3x2+ax+b, where a and b are constants, is divided by (x+1) the remainder is 45, show that b−a=48. Given also that (2x+1) is a factor of f(x), find the value of a and the of b. Hence factorise f(x) completely.
(5 marks)
Show/Hide Solution
f(x)=6x3+3x2+ax+b When f(x) is divided by x+1,the remainder is 45.∴f(−1)=45∴6(−1)3+3(−1)2+a(−1)+b=45∴−6+3−a+b=45∴b−a=48 −−−−−−−−(1) Since 2x+1 is a factor of f(x),
∴f(−12)=0
∴6(−12)3+3(−12)2+a(−12)+b=0
−34+34−a2+b=0
∴ 2b−a=0 −−−−−−−−(2) By Equation (2) − Equation(1), b=−48.∴−48−a=48∴a=−96∴f(x)=6x3+3x2−96x−48
3x2 −482x+1¯)6x3+3x2−96x−486x3+3x2_ −96x−48 −96x−48_ 0
∴f(x)=(2x+1)(3x2−48) =3(2x+1)(x2−16) =3(2x+1)(x+4)(x−4)
∴f(−12)=0
∴6(−12)3+3(−12)2+a(−12)+b=0
−34+34−a2+b=0
∴ 2b−a=0 −−−−−−−−(2) By Equation (2) − Equation(1), b=−48.∴−48−a=48∴a=−96∴f(x)=6x3+3x2−96x−48
3x2 −482x+1¯)6x3+3x2−96x−486x3+3x2_ −96x−48 −96x−48_ 0
∴f(x)=(2x+1)(3x2−48) =3(2x+1)(x2−16) =3(2x+1)(x+4)(x−4)
9. (b) If A=(−23−34) show that A+A−1−2I=O where I is a unit matrix of order 2.
(5 marks)
Show/Hide Solution
A=(−23−34)
∴ detA=−8−(−9)=1≠0,∴ A−1 exists.
∴ A−1=(4−33−2)
∴ A+A−1−2I
= (−23−34)+(4−33−2)−2(1001)
= (−23−34)+(4−33−2)+(2002)
= (−2+4−23−3−3+34−2−2)
= (0000)
= O∴ A+A−1−2I=O
∴ detA=−8−(−9)=1≠0,∴ A−1 exists.
∴ A−1=(4−33−2)
∴ A+A−1−2I
= (−23−34)+(4−33−2)−2(1001)
= (−23−34)+(4−33−2)+(2002)
= (−2+4−23−3−3+34−2−2)
= (0000)
= O∴ A+A−1−2I=O
10. (a) The matrices P,Q and R such that P=(2132), Q=(−1021) and R=PQ. Verify that Q−1P−1=R−1.
(5 marks)
Show/Hide Solution
P=(2132),Q=(−1021)
R=PQ [given]
∴R=(2132)(−1021)
∴R=(−2+20+1−3+40+2)=(0112)
detP=4−3=1≠0, hence P−1exists. detQ=−1−0=−1≠0, hence Q−1exists. detR=0−1=−1≠0, hence R−1exists.
∴P−1=1detP(2−1−32)=11(2−1−32)=(2−1−32)
Q−1=1detQ(−1021)=1−1(10−2−1)=(−1021)
R−1=1detR(2−1−10)=1−1(2−1−10)=(−2110)
∴Q−1P−1=(−1021)(2−1−32)
∴Q−1P−1=(−2+01+04−3−2+2)=(−2110)
∴Q−1P−1=R−1
R=PQ [given]
∴R=(2132)(−1021)
∴R=(−2+20+1−3+40+2)=(0112)
detP=4−3=1≠0, hence P−1exists. detQ=−1−0=−1≠0, hence Q−1exists. detR=0−1=−1≠0, hence R−1exists.
∴P−1=1detP(2−1−32)=11(2−1−32)=(2−1−32)
Q−1=1detQ(−1021)=1−1(10−2−1)=(−1021)
R−1=1detR(2−1−10)=1−1(2−1−10)=(−2110)
∴Q−1P−1=(−1021)(2−1−32)
∴Q−1P−1=(−2+01+04−3−2+2)=(−2110)
∴Q−1P−1=R−1
10. (b) The probability that a student will receive an A,B,C or D grade are 0.3, 0.38, 0.22 and 0.1 respectively. What is the probability that student will receive
(i) at least B grade.
(ii) at most C grade.
(iii) not an A grade.
(iv) B or C grade.
(i) at least B grade.
(ii) at most C grade.
(iii) not an A grade.
(iv) B or C grade.
(5 marks)
Show/Hide Solution
P(A grade)=0.3 P(B grade)=0.38 P(C grade)=0.22 P(D grade)=0.1(i) P(at least B grade)=P(A grade or B grade) =P(A grade) + P(B grade) =0.3+0.38 =0.68(ii) P(at most C grade)=P(C grade or D grade) =P(C grade) + P(D grade) =0.22+0.1 =0.32(iii) P(not an A grade)=1−P(A grade) =1−0.3 =0.7(iv) P(B or C grade)=P(B grade) + P(C grade) =0.38+0.22 =0.6
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!