1. If y=ln(sin32x), then prove that If 3(d2ydx2)+(dydx)2+36=0.
Show/Hide Solution
y=ln(sin32x) =ln(sin2x)3 =3ln(sin2x)
dydx=3sin2x⋅ddx(sin2x)
=3sin2x⋅cos2x⋅ddx(2x)
=6cos2xsin2x
=6cot2x
d2ydx2=6(−cosec22x)ddx(2x)
=−12cosec22x
∴
\displaystyle \begin{array}{l}=3(-12{{\operatorname{cosec}}^{2}}2x)+{{(6\cot 2x)}^{2}}+36\\\\=36(-{{\operatorname{cosec}}^{2}}2x+{{\cot }^{2}}2x+1)\\\\=36(-{{\operatorname{cosec}}^{2}}2x+{{\operatorname{cosec}}^{2}}2x)\ \ \ \ \left[ {1+{{{\cot }}^{2}}2x={{{\operatorname{cosec}}}^{2}}2x} \right]\\\\=0\end{array}
dydx=3sin2x⋅ddx(sin2x)
=3sin2x⋅cos2x⋅ddx(2x)
=6cos2xsin2x
=6cot2x
d2ydx2=6(−cosec22x)ddx(2x)
=−12cosec22x
∴
\displaystyle \begin{array}{l}=3(-12{{\operatorname{cosec}}^{2}}2x)+{{(6\cot 2x)}^{2}}+36\\\\=36(-{{\operatorname{cosec}}^{2}}2x+{{\cot }^{2}}2x+1)\\\\=36(-{{\operatorname{cosec}}^{2}}2x+{{\operatorname{cosec}}^{2}}2x)\ \ \ \ \left[ {1+{{{\cot }}^{2}}2x={{{\operatorname{cosec}}}^{2}}2x} \right]\\\\=0\end{array}
2. If \displaystyle y = (3 + 4x) e^{-2x} , show that \displaystyle \frac{{d}^{2}y}{d{x}^{2}} + 4(\frac{dy}{dx})+4y=0.
Show/Hide Solution
\displaystyle \ \ \ y=(3+4x){{e}^{{-2x}}}
\displaystyle \ \ \ \frac{{dy}}{{dx}}=(3+4x)\cdot \frac{d}{{dx}}({{e}^{{-2x}}})+{{e}^{{-2x}}}\frac{d}{{dx}}(3+4x)
\displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ =(3+4x){{e}^{{-2x}}}\frac{d}{{dx}}(-2x)+4{{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ =-2(3+4x){{e}^{{-2x}}}+4{{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ =(-6-8x+4){{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ =(-8x-2){{e}^{{-2x}}}\end{array}
\displaystyle \ \ \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=(-8x-2)\cdot \frac{d}{{dx}}({{e}^{{-2x}}})+{{e}^{{-2x}}}\frac{d}{{dx}}(-8x-2)
\displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ \ \ =(-8x-2){{e}^{{-2x}}}\frac{d}{{dx}}(-2x)-8{{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ \ \ =-2(-8x-2){{e}^{{-2x}}}-8{{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ \ \ =(16x+4-8){{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ \ \ =(16x-4){{e}^{{-2x}}}\end{array}
\displaystyle \therefore \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}+4\left( {\frac{{dy}}{{dx}}} \right)+4y
\displaystyle \begin{array}{l}=(16x-4){{e}^{{-2x}}}+4(-8x-2){{e}^{{-2x}}}+4(3+4x){{e}^{{-2x}}}\\\\=(16x-4-32x-8+12+16x){{e}^{{-2x}}}\\\\=0\end{array}
\displaystyle \ \ \ \frac{{dy}}{{dx}}=(3+4x)\cdot \frac{d}{{dx}}({{e}^{{-2x}}})+{{e}^{{-2x}}}\frac{d}{{dx}}(3+4x)
\displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ =(3+4x){{e}^{{-2x}}}\frac{d}{{dx}}(-2x)+4{{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ =-2(3+4x){{e}^{{-2x}}}+4{{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ =(-6-8x+4){{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ =(-8x-2){{e}^{{-2x}}}\end{array}
\displaystyle \ \ \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=(-8x-2)\cdot \frac{d}{{dx}}({{e}^{{-2x}}})+{{e}^{{-2x}}}\frac{d}{{dx}}(-8x-2)
\displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ \ \ =(-8x-2){{e}^{{-2x}}}\frac{d}{{dx}}(-2x)-8{{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ \ \ =-2(-8x-2){{e}^{{-2x}}}-8{{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ \ \ =(16x+4-8){{e}^{{-2x}}}\\\\\ \ \ \ \ \ \ \ \ \ =(16x-4){{e}^{{-2x}}}\end{array}
\displaystyle \therefore \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}+4\left( {\frac{{dy}}{{dx}}} \right)+4y
\displaystyle \begin{array}{l}=(16x-4){{e}^{{-2x}}}+4(-8x-2){{e}^{{-2x}}}+4(3+4x){{e}^{{-2x}}}\\\\=(16x-4-32x-8+12+16x){{e}^{{-2x}}}\\\\=0\end{array}
3. If \displaystyle y = a e ^{\sin x}, where \displaystyle a is a constant, prove that \displaystyle \frac{{d}^{2}y}{d{x}^{2}} = (\cos x-\tan x)\frac{dy}{dx}.
Show/Hide Solution
\displaystyle \ \ \ y=a{{e}^{{\sin x}}}
\displaystyle \therefore \ \frac{{dy}}{{dx}}=a{{e}^{{\sin x}}}\frac{d}{{dx}}(\sin x)
\displaystyle \ \ \ \ \ \ \ \ =a{{e}^{{\sin x}}}\cdot \cos x
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}\frac{d}{{dx}}(\cos x)+a\cos x\frac{d}{{dx}}({{e}^{{\sin x}}})
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}(-\sin x)+a{{e}^{{\sin x}}}\cos x\frac{d}{{dx}}(\sin x)
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}(-\sin x)+a{{e}^{{\sin x}}}{{\cos }^{2}}x
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}({{\cos }^{2}}x-\sin x)
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}\cdot \cos x\left( {\frac{{{{{\cos }}^{2}}x}}{{\cos x}}-\frac{{\sin x}}{{\cos x}}} \right)
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}\cdot \cos x\left( {\cos x-\tan x} \right)
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=\left( {\cos x-\tan x} \right)\frac{{dy}}{{dx}}
\displaystyle \therefore \ \frac{{dy}}{{dx}}=a{{e}^{{\sin x}}}\frac{d}{{dx}}(\sin x)
\displaystyle \ \ \ \ \ \ \ \ =a{{e}^{{\sin x}}}\cdot \cos x
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}\frac{d}{{dx}}(\cos x)+a\cos x\frac{d}{{dx}}({{e}^{{\sin x}}})
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}(-\sin x)+a{{e}^{{\sin x}}}\cos x\frac{d}{{dx}}(\sin x)
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}(-\sin x)+a{{e}^{{\sin x}}}{{\cos }^{2}}x
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}({{\cos }^{2}}x-\sin x)
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}\cdot \cos x\left( {\frac{{{{{\cos }}^{2}}x}}{{\cos x}}-\frac{{\sin x}}{{\cos x}}} \right)
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=a{{e}^{{\sin x}}}\cdot \cos x\left( {\cos x-\tan x} \right)
\displaystyle \therefore \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=\left( {\cos x-\tan x} \right)\frac{{dy}}{{dx}}
4. If \displaystyle y=e^x(\sin 2x+ \cos 2x), prove that \displaystyle y''-2y'+5y=0.
Show/Hide Solution
\displaystyle \ \ \ \ y={{e}^{x}}(\sin 2x+\cos 2x)
\displaystyle \therefore \ \ {y}'={{e}^{x}}\frac{d}{{dx}}(\sin 2x+\cos 2x)+(\sin 2x+\cos 2x)\frac{d}{{dx}}({{e}^{x}})
\displaystyle \begin{array}{l}\therefore \ \ {y}'={{e}^{x}}(2\cos 2x-2\sin 2x)+{{e}^{x}}(\sin 2x+\cos 2x)\\\\\therefore \ \ {y}'={{e}^{x}}(2\cos 2x-2\sin 2x+\sin 2x+\cos 2x)\\\\\therefore \ \ {y}'={{e}^{x}}(3\cos 2x-\sin 2x)\\\\\therefore \ \ {y}''={{e}^{x}}\frac{d}{{dx}}(3\cos 2x-\sin 2x)+(3\cos 2x-\sin 2x)\frac{d}{{dx}}({{e}^{x}})\\\\\therefore \ \ {y}''={{e}^{x}}(-6\sin 2x-2\cos 2x)+{{e}^{x}}(3\cos 2x-\sin 2x)\\\\\therefore \ \ {y}''={{e}^{x}}(-6\sin 2x-2\cos 2x+3\cos 2x-\sin 2x)\\\\\therefore \ \ {y}''={{e}^{x}}(-7\sin 2x+\cos 2x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ------(1)\\\\\therefore \ -2{y}'={{e}^{x}}(2\sin 2x-6\cos 2x)\ \ \ \ \ \ \ \ \ \ \ \ \ ------(2)\\\\\therefore \ \ 5y={{e}^{x}}(5\sin 2x+5\cos 2x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ------(3)\\\\\text{By Equation (1) + Equation (2) + Equation (3)},\\\\\ \ \ \ {y}''-2{y}'+5y=0\end{array}
\displaystyle \therefore \ \ {y}'={{e}^{x}}\frac{d}{{dx}}(\sin 2x+\cos 2x)+(\sin 2x+\cos 2x)\frac{d}{{dx}}({{e}^{x}})
\displaystyle \begin{array}{l}\therefore \ \ {y}'={{e}^{x}}(2\cos 2x-2\sin 2x)+{{e}^{x}}(\sin 2x+\cos 2x)\\\\\therefore \ \ {y}'={{e}^{x}}(2\cos 2x-2\sin 2x+\sin 2x+\cos 2x)\\\\\therefore \ \ {y}'={{e}^{x}}(3\cos 2x-\sin 2x)\\\\\therefore \ \ {y}''={{e}^{x}}\frac{d}{{dx}}(3\cos 2x-\sin 2x)+(3\cos 2x-\sin 2x)\frac{d}{{dx}}({{e}^{x}})\\\\\therefore \ \ {y}''={{e}^{x}}(-6\sin 2x-2\cos 2x)+{{e}^{x}}(3\cos 2x-\sin 2x)\\\\\therefore \ \ {y}''={{e}^{x}}(-6\sin 2x-2\cos 2x+3\cos 2x-\sin 2x)\\\\\therefore \ \ {y}''={{e}^{x}}(-7\sin 2x+\cos 2x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ------(1)\\\\\therefore \ -2{y}'={{e}^{x}}(2\sin 2x-6\cos 2x)\ \ \ \ \ \ \ \ \ \ \ \ \ ------(2)\\\\\therefore \ \ 5y={{e}^{x}}(5\sin 2x+5\cos 2x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ------(3)\\\\\text{By Equation (1) + Equation (2) + Equation (3)},\\\\\ \ \ \ {y}''-2{y}'+5y=0\end{array}
5. Find the value of \displaystyle x between \displaystyle 0 and \displaystyle \frac{\pi }{2} for which the curve \displaystyle y = e^x \cos x has a stationary point. Determine whether it is a maximum or a minimum point.
Show/Hide Solution
\displaystyle \ \ \ \ y={{e}^{x}}\cos x,\ 0<x<\frac{\pi }{2}
\displaystyle \ \ \ \ \frac{{dy}}{{dx}}=-{{e}^{x}}\sin x+{{e}^{x}}\cos x
\displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ \ ={{e}^{x}}(\cos x-\sin x)\\\\\ \ \ \ \frac{{dy}}{{dx}}=0\ \text{when}\ {{e}^{x}}(\cos x-\sin x)=0\\\\\ \ \ \ \text{Since}\ {{e}^{x}}\ne 0\ \text{for every }x\in R,\ \\\\\ \ \ \ \cos x-\sin x=0.\\\\\therefore \ \ \cos x=\sin x\\\\\therefore \ \ \tan x=1\end{array}
\displaystyle \therefore \ \ x=\frac{\pi }{4} [Calculus တြင္ ေထာင့္မ်ားကို တိုင္းတာရာတြင္ linear scale ျဖစ္ေသာ radian စနစ္ကိုသာ သံုးရမည္။ degree ျဖင့္ အေျဖ မေပးရပါ]
\displaystyle \ \ \ \ \text{When }x=\frac{\pi }{4},y={{e}^{{\frac{\pi }{4}}}}\cos \frac{\pi }{4}=\frac{{\sqrt{2}}}{2}{{e}^{{\frac{\pi }{4}}}}
\displaystyle \therefore \ \ \text{The stationary point is }\left( {\frac{\pi }{4},\frac{{\sqrt{2}}}{2}{{e}^{{\frac{\pi }{4}}}}} \right).
\displaystyle \left( {\frac{\pi }{4},\frac{{\sqrt{2}}}{2}{{e}^{{\frac{\pi }{4}}}}} \right) သည္ \displaystyle \left( {0.79,1.55} \right) ခန္႔ရွိသည္။
\displaystyle \ \ \ \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}={{e}^{x}}(-\sin x-\cos x)+{{e}^{x}}(\cos x-\sin x)
\displaystyle \therefore \ \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}={{e}^{x}}(-\sin x-\cos x+\cos x-\sin x)
\displaystyle \therefore \ \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=-2{{e}^{x}}\sin x
\displaystyle \therefore \ \ {{\left. {\frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}} \right|}_{{x=\frac{\pi }{4}}}}=-2{{e}^{{\frac{\pi }{4}}}}\sin \frac{\pi }{4}=-\sqrt{2}{{e}^{{\frac{\pi }{4}}}}<0
\displaystyle \therefore \ \ \text{The stationary point is a maximum turning point}.
\displaystyle \ \ \ \ \frac{{dy}}{{dx}}=-{{e}^{x}}\sin x+{{e}^{x}}\cos x
\displaystyle \begin{array}{l}\ \ \ \ \ \ \ \ \ ={{e}^{x}}(\cos x-\sin x)\\\\\ \ \ \ \frac{{dy}}{{dx}}=0\ \text{when}\ {{e}^{x}}(\cos x-\sin x)=0\\\\\ \ \ \ \text{Since}\ {{e}^{x}}\ne 0\ \text{for every }x\in R,\ \\\\\ \ \ \ \cos x-\sin x=0.\\\\\therefore \ \ \cos x=\sin x\\\\\therefore \ \ \tan x=1\end{array}
\displaystyle \therefore \ \ x=\frac{\pi }{4} [Calculus တြင္ ေထာင့္မ်ားကို တိုင္းတာရာတြင္ linear scale ျဖစ္ေသာ radian စနစ္ကိုသာ သံုးရမည္။ degree ျဖင့္ အေျဖ မေပးရပါ]
\displaystyle \ \ \ \ \text{When }x=\frac{\pi }{4},y={{e}^{{\frac{\pi }{4}}}}\cos \frac{\pi }{4}=\frac{{\sqrt{2}}}{2}{{e}^{{\frac{\pi }{4}}}}
\displaystyle \therefore \ \ \text{The stationary point is }\left( {\frac{\pi }{4},\frac{{\sqrt{2}}}{2}{{e}^{{\frac{\pi }{4}}}}} \right).
\displaystyle \left( {\frac{\pi }{4},\frac{{\sqrt{2}}}{2}{{e}^{{\frac{\pi }{4}}}}} \right) သည္ \displaystyle \left( {0.79,1.55} \right) ခန္႔ရွိသည္။
\displaystyle \ \ \ \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}={{e}^{x}}(-\sin x-\cos x)+{{e}^{x}}(\cos x-\sin x)
\displaystyle \therefore \ \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}={{e}^{x}}(-\sin x-\cos x+\cos x-\sin x)
\displaystyle \therefore \ \ \frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}=-2{{e}^{x}}\sin x
\displaystyle \therefore \ \ {{\left. {\frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}} \right|}_{{x=\frac{\pi }{4}}}}=-2{{e}^{{\frac{\pi }{4}}}}\sin \frac{\pi }{4}=-\sqrt{2}{{e}^{{\frac{\pi }{4}}}}<0
\displaystyle \therefore \ \ \text{The stationary point is a maximum turning point}.
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!