Processing math: 63%

Calculus : Differentiation (Chain Rule, Product Rule and Quotient Rule)

Differentiate the following with respect to x.

(i)  (2x2)ln(3x+1)

Show Solution
(i)     ddx[(2x2)ln(3x+1)]

=(2x2)ddxln(3x+1)+ln(3x+1)ddx(2x2)

=2x23x+1ddx(3x+1)2xln(3x+1)

=3(2x2)3x+12xln(3x+1)


(ii)  4tan2x5x

Show Solution
(ii)     ddx[4tan2x5x]

=5xddx(4tan2x)(4tan2x)ddx(5x)25x2

=5x(sec22x)ddx(2x)5(4tan2x)25x2

=10xsec22x+5tan2x2025x2

(iii)  Given that a curve has equation y=1x+2x where  x>0, Find dydx and d2ydx2.
Hence or otherwise find the coordinates and nature of the stationary point of the curve.

Show Solution
(iii)   y=1x+2x,x>0

dydx=1x2+1x

d2ydx2=2x312xx

At the stationary point, dydx=0.

\displaystyle \therefore -\frac{1}{{{{x}^{2}}}}+\frac{1}{{\sqrt{x}}}=0

\displaystyle \therefore \frac{1}{{\sqrt{x}}}=\frac{1}{{{{x}^{2}}}}

\displaystyle \therefore x\sqrt{x}=1

\displaystyle \therefore x=1

When \displaystyle x=1, \displaystyle y=\frac{1}{1}+2\sqrt{1}=3.

Therefore, the stationary point is \displaystyle (1,3).

\displaystyle {{\left. {\frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}} \right|}_{{(1,3)}}}=\frac{2}{{{{1}^{2}}}}-\frac{1}{{2(1)\sqrt{1}}}=\frac{3}{2}>0

Therefore, the stationary point (1,3) is a minimum turning point.
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم