Differentiate the following with respect to x.
(i) (2−x2)ln(3x+1)
(ii) 4−tan2x5x
(iii) Given that a curve has equation y=1x+2√x where x>0, Find dydx and d2ydx2.
Hence or otherwise find the coordinates and nature of the stationary point of the curve.
(i) (2−x2)ln(3x+1)
Show Solution
(i) ddx[(2−x2)ln(3x+1)]
=(2−x2)ddxln(3x+1)+ln(3x+1)ddx(2−x2)
=2−x23x+1ddx(3x+1)−2xln(3x+1)
=3(2−x2)3x+1−2xln(3x+1)
=(2−x2)ddxln(3x+1)+ln(3x+1)ddx(2−x2)
=2−x23x+1ddx(3x+1)−2xln(3x+1)
=3(2−x2)3x+1−2xln(3x+1)
(ii) 4−tan2x5x
Show Solution
(ii) ddx[4−tan2x5x]
=5xddx(4−tan2x)−(4−tan2x)ddx(5x)25x2
=5x(−sec22x)ddx(2x)−5(4−tan2x)25x2
=−10xsec22x+5tan2x−2025x2
=5xddx(4−tan2x)−(4−tan2x)ddx(5x)25x2
=5x(−sec22x)ddx(2x)−5(4−tan2x)25x2
=−10xsec22x+5tan2x−2025x2
Hence or otherwise find the coordinates and nature of the stationary point of the curve.
Show Solution
(iii) y=1x+2√x,x>0
dydx=−1x2+1√x
d2ydx2=2x3−12x√x
At the stationary point, dydx=0.
\displaystyle \therefore -\frac{1}{{{{x}^{2}}}}+\frac{1}{{\sqrt{x}}}=0
\displaystyle \therefore \frac{1}{{\sqrt{x}}}=\frac{1}{{{{x}^{2}}}}
\displaystyle \therefore x\sqrt{x}=1
\displaystyle \therefore x=1
When \displaystyle x=1, \displaystyle y=\frac{1}{1}+2\sqrt{1}=3.
Therefore, the stationary point is \displaystyle (1,3).
\displaystyle {{\left. {\frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}} \right|}_{{(1,3)}}}=\frac{2}{{{{1}^{2}}}}-\frac{1}{{2(1)\sqrt{1}}}=\frac{3}{2}>0
Therefore, the stationary point (1,3) is a minimum turning point.
dydx=−1x2+1√x
d2ydx2=2x3−12x√x
At the stationary point, dydx=0.
\displaystyle \therefore -\frac{1}{{{{x}^{2}}}}+\frac{1}{{\sqrt{x}}}=0
\displaystyle \therefore \frac{1}{{\sqrt{x}}}=\frac{1}{{{{x}^{2}}}}
\displaystyle \therefore x\sqrt{x}=1
\displaystyle \therefore x=1
When \displaystyle x=1, \displaystyle y=\frac{1}{1}+2\sqrt{1}=3.
Therefore, the stationary point is \displaystyle (1,3).
\displaystyle {{\left. {\frac{{{{d}^{2}}y}}{{d{{x}^{2}}}}} \right|}_{{(1,3)}}}=\frac{2}{{{{1}^{2}}}}-\frac{1}{{2(1)\sqrt{1}}}=\frac{3}{2}>0
Therefore, the stationary point (1,3) is a minimum turning point.
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!