Solve the equation
(i) 3sinx−5cosx=0 for 0∘<x<360∘.
Show Solution
Let Rcosθ=3 and Rsinθ=5.
∴R=√32+52=√34
tanθ=53=1.6667
∴θ=59∘2′
∴3sinx−5cosx=√34sin(x−59∘2′)
∴√34sin(x−59∘2′)=0
∴sin((x−59∘2′)=0
∴x−59∘2′=0∘ (or) x−59∘2′=180∘
∴x=59∘2′ (or) x=239∘2′
∴R=√32+52=√34
tanθ=53=1.6667
∴θ=59∘2′
∴3sinx−5cosx=√34sin(x−59∘2′)
∴√34sin(x−59∘2′)=0
∴sin((x−59∘2′)=0
∴x−59∘2′=0∘ (or) x−59∘2′=180∘
∴x=59∘2′ (or) x=239∘2′
(ii) 5sin2y+9cosy−3=0 for 0∘<y<360∘.
Show Solution
5(1−cos2y)+9cosy−3=0
5−5cos2y+9cosy−3=0
5cos2y−9cosy−2=0
(5cosy+1)(cosy−2)=0
∴cosy=−15 or cosy=2
Since −1≤cosy≤1, cosy=2 is impossible.
∴cosy=−15=−0.2
∴basic acute angle = 78∘28′
Since cosy<0, y lies in the second or third quadrant.
∴y=180∘−78∘28′ or y=180∘+78∘28′
∴y=101∘32′ or y=258∘28′
5−5cos2y+9cosy−3=0
5cos2y−9cosy−2=0
(5cosy+1)(cosy−2)=0
∴cosy=−15 or cosy=2
Since −1≤cosy≤1, cosy=2 is impossible.
∴cosy=−15=−0.2
∴basic acute angle = 78∘28′
Since cosy<0, y lies in the second or third quadrant.
∴y=180∘−78∘28′ or y=180∘+78∘28′
∴y=101∘32′ or y=258∘28′
(iii) 6sin2x=5+cosx for 0∘<x<180∘.
Show Solution
6sin2x=5+cosx
6(1−cos2x)=5+cosx
6−6cos2x=5+cosx
6cos2x+cosx−1=0
(3cosx−1)(2cosx+1)=0
cosx=13 or cosx=−12
∴x=70∘31′ or x=120∘
6(1−cos2x)=5+cosx
6−6cos2x=5+cosx
6cos2x+cosx−1=0
(3cosx−1)(2cosx+1)=0
cosx=13 or cosx=−12
∴x=70∘31′ or x=120∘
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!