Processing math: 100%

Problem Study : Trigonometric Equations

 

Solve the equation

(i) 3sinx5cosx=0 for 0<x<360.

Show Solution
Let Rcosθ=3 and Rsinθ=5.

R=32+52=34

   tanθ=53=1.6667

θ=592

3sinx5cosx=34sin(x592)

34sin(x592)=0

sin((x592)=0

x592=0 (or) x592=180

x=592 (or) x=2392


(ii) 5sin2y+9cosy3=0 for  0<y<360.

Show Solution
5(1cos2y)+9cosy3=0

55cos2y+9cosy3=0

5cos2y9cosy2=0

(5cosy+1)(cosy2)=0

cosy=15  or cosy=2

Since 1cosy1, cosy=2 is impossible.

cosy=15=0.2

basic acute angle = 7828

Since cosy<0, y lies in the second or third quadrant.

y=1807828 or y=180+7828

y=10132 or y=25828


(iii) 6sin2x=5+cosx for 0<x<180.

Show Solution
6sin2x=5+cosx

6(1cos2x)=5+cosx

66cos2x=5+cosx

6cos2x+cosx1=0

(3cosx1)(2cosx+1)=0

cosx=13  or cosx=12

x=7031 or x=120

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم