Processing math: 6%

May-Jun-21-p1-CIE-0606/12 : Solution

2021 (May-June) CIE (0606-Additional Mathematics), Paper 1/12 ၏ Question နှင့် Solution များ ဖြစ်ပါသည်။ Question Paper ကို ဒီနေရာမှာ Download ယူနိုင်ပါသည်။

  1. Write (pqr)2r13(p2r)1q3 in the form paqbrc, where a,b and c are constants. [3]



  2. (pqr)2r13(p2r)1q3=p2q2r2r13p2r1q3=p2+2q23r13+1=p0q5r43

  3. (a) On the axes, sketch the graph of y=|43x|, stating the intercepts with the coordinate axes. [2]
    (b) Solve the inequality |43x|7. [3]



  4. y=|43x|=|3(x43)|=|3||(x43)|=3|x43|
    The vertex point is \left(\dfrac{4}{3}, 0\right)\\\\\\\\
    When x=0, y=3\left|0-\dfrac{4}{3}\right|=4\\\\\\\\ .
    \therefore The y-intercept is (0,4).

    \begin{aligned} |4-3 x| & \geq 7 \\\\ 3\left|x-\frac{4}{3}\right| & \geq 7 \\\\ \left|x-\frac{4}{3}\right| & \geq \frac{7}{3} \\\\ x-\frac{4}{3} & \leq-\frac{7}{3} \text { or } x-\frac{4}{3} \geq \frac{7}{3} \\\\ x & \leq-1 \text { or } x \geq \frac{11}{3} \end{aligned}

  5. The diagram shows the quadrilateral O A B C such that \overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b} and \overrightarrow{O C}=\mathbf{c}. The lines O B and A C intersect at the point P, such that A P: P C=3: 2.
    (a) Find \overrightarrow{O P} in terms of \mathbf{a} and \mathbf{c}. [3]
    (b) Given also that O P: P B=2: 3, show that 2 \mathbf{b}=3 \mathbf{c}+2 \mathbf{a}. [2]



  6. \begin{aligned} A P: P C &=3: 2 \\\\ \overrightarrow{O P} &=\frac{1}{5}(2 \overrightarrow{O A}+3 \overrightarrow{O C}) \\\\ &=\frac{1}{5}(2 \vec{a}+3 \vec{c})\\\\ \end{aligned}
    O P: P B=2: 3 and O, P, B are collinear.
    \begin{aligned} &\\ \therefore 3 \overrightarrow{O P} &=2 \overrightarrow{P B} \\\\ \therefore \overrightarrow{P B} &=\frac{3}{2} \overrightarrow{O P} \\\\ &=\frac{3}{10}(2 \vec{a}+3 \vec{c}) \\\\ \overrightarrow{O B} &=\overrightarrow{O P}+\overrightarrow{P B} \\\\ \vec{b} &=\frac{1}{5}(2 \vec{a}+3 \vec{c})+\frac{3}{10}(2 \vec{a}+3 \vec{c}) \\\\ &=\frac{1}{2}(2 \vec{a}+3 \vec{c}) \\\\ \therefore 2\vec{b} &=2 \vec{a}+3 \vec{c} \end{aligned}

  7. A curve is such that \dfrac{d^{2} y}{d x^{2}}=(3 x+2)^{-\frac{1}{3}}. The curve has gradient 4 at the point (2,6.2). Find the equation of the curve. [6]



  8. \begin{aligned} \frac{d^{2} y}{d x^{2}} &=(3 x+2)^{-\frac{1}{3}} \\\\ \therefore\ \frac{d y}{d x} &=\displaystyle\int(3 x+2)^{-\frac{1}{3}} d x \\\\ \text { Let } u &=3 x+2 \\\\ d u &=3 d x \\\\ d x &=\frac{1}{3} d u\\\\ \therefore\ & \quad \displaystyle\int(3 x+2)^{-\frac{1}{3}} d x \\\\ &=\frac{1}{3} \displaystyle\int u^{-\frac{1}{3}} d u \\\\ &=\frac{1 / 3}{2 / 3} u^{2 / 3}+9 \\\\ &=\frac{1}{2} u^{2 / 3}+c_{1} \\\\ \therefore\ \frac{d y}{d x} &=\frac{1}{2}(3 x+2)^{\frac{2}{3}}+c_{1}\\\\ \left.\frac{d y}{d x}\right|_{(2,6.2)} &=4 \\\\ \frac{1}{2}(6+2)^{\frac{2}{3}}+c_{1} &=4 \\\\ 2+c_{1} &=4 \\\\ \therefore\ c_{1} &=2 \\\\ \therefore\ \frac{d y}{d x} &=\frac{1}{2}(3 x+2)^{\frac{2}{3}}+2\\\\ y &=\displaystyle\int\left[\frac{1}{2}(3 x+2)^{\frac{2}{3}}+2\right] d x \\\\ &=\frac{1}{2} \displaystyle\int(3 x+2)^{\frac{2}{3}} d x+2 \int d x \\\\ &=\frac{1}{2} \times \frac{1}{3} \displaystyle\int(3 x+2)^{\frac{2}{3}} d(3 x+2)+2 \int d x \\\\ &=\frac{1}{10}(3 x+2)^{\frac{5}{3}}+2 x+c_{2}\\\\ \text{ When } x&=2, y=6.2\\\\ &6 \cdot 2=\frac{1}{10}(6+2)^{\frac{5}{3}}+4+c_{2} \\\\ &6 \cdot 2=3 \cdot 2+4+c_{2}\\\\ &\therefore\ c_{2}=-1 \\\\ &\therefore\ y=\frac{1}{10}(3 x+2)^{\frac{5}{3}}+2 x-1 \end{aligned}

  9. (a) Given that \log _{a} p+\log _{a} 5-\log _{a} 4=\log _{a} 20, find the value of p. [2]
    (b) Solve the equation 3^{2 x+1}+8\left(3^{x}\right)-3=0. [3]
    (c) Solve the equation 4 \log _{y} 2+\log _{2} y=4. [3]



  10. \begin{aligned} \text { (a) }\quad \log _{a} p+\log _{a} 5-\log _{a} 4 &=\log _{a} 20 \\\\ \log _{a}\left(\frac{5 p}{4}\right) &=\log _{a} 20 \\\\ \therefore \quad \frac{5 p}{4} &=20 \\\\ 5 p &=80 \\\\ p &=16\\\\ \text { (b) }\quad \qquad 3^{2 x+1}+8\left(3^{x}\right)-3&=0\\\\ 3^{2 x} \cdot 3+8\left(3^{x}\right)-3&=0 \\\\ 3\left(3^{x}\right)^{2}+8\left(3^{x}\right)-3&=0 \\\\ \left(3 \cdot 3^{x}-1\right)\left(3^{x}+3\right)&=0 \\\\ 3^{x}=\frac{1}{3} \text { or } 3^{x}&=-3\\\\ \end{aligned}
    \qquad Since 3^{x}>0 for all x \in \mathbb{R}, 3^{x}=-3 has no solution.
    \begin{aligned} &\\ \qquad 3^{x}&=\frac{1}{3} \\\\ 3^{x}&=3^{-1} \\\\ x&=-1\\\\ \end{aligned}
    \begin{aligned} \text { (c) } \qquad 4 \log _{y} 2+\log _{2} y &=4 \\\\ \frac{4}{\log _{2} y}+\log _{2} y &=4 \\\\ 4+\left(\log _{2} y\right)^{2} &=4 \cdot \log _{2} y \\\\ \left(\log _{2} y\right)^{2}-4 \log y+4 &=0 \\\\ \left(\log _{2} y-2\right)^{2} &=0 \\\\ \log _{2} y &=2 \\\\ y &=4 \end{aligned}

  11. DO NOT USE A CALCULATOR IN THIS QUESTION.
    A curve has equation y=(3+\sqrt{5}) x^{2}-8 \sqrt{5} x+60.
    (a) Find the x-coordinate of the stationary point on the curve, giving your answer in the form a+b \sqrt{5}, where a and b are integers. [4]
    (b) Hence find the y-coordinate of this stationary point, giving your answer in the form c \sqrt{5}, where c is an integer. [3]



  12. \begin{aligned} &y =(3+\sqrt{5}) x^{2}-8 \sqrt{5} x+60 . \\\\ &\frac{d y}{d x} =2(3+\sqrt{5}) x-8 \sqrt{5}\\\\ \end{aligned}
    At stationary point,
    \begin{aligned} &\\ \frac{d y}{d x} &=0 \\\\ 2(3+\sqrt{5}) x-8 \sqrt{5} &=0 \\\\ x &=\frac{8 \sqrt{5}}{2(3+\sqrt{5})}\\\\ &=\frac{4 \sqrt{5}}{3+\sqrt{5}} \\\\ &=\frac{4 \sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}} \\\\ &=\frac{12 \sqrt{5}=20}{9-5} \\\\ &=\frac{12 \sqrt{5}-20}{4} \\\\ &=-5+3 \sqrt{5}\\\\ \end{aligned}
    When x=-5+3 \sqrt{5},
    \begin{aligned} &\\ y &=(3+\sqrt{5})(-5+3 \sqrt{5})^{2}-8 \sqrt{5}(-5+3 \sqrt{5})+60 \\\\ &=(3+\sqrt{5})(25-30 \sqrt{5}+45)+40 \sqrt{5}-120+60 \\\\ &=(3+\sqrt{5})(70-30 \sqrt{5})+40 \sqrt{5}-60 \\\\ &=210-90 \sqrt{5}+70 \sqrt{5}-150+40 \sqrt{5}-60 \\\\ &=20 \sqrt{5}\\\\ \end{aligned}

  13. (a) A six-character password is to be made from the following eight characters.

    \begin{array}{llllll}\text { Digits } & \quad 1\quad & \quad 3\quad & \quad 5\quad & \quad 8\quad & \quad 9\quad \\\\ \text { Symbols } & \quad * \quad & \quad \$ \quad & \quad \# \quad & & \end{array}

    No character may be used more than once in a password. Find the number of different passwords that can be chosen if
    (i) there are no restrictions, [1]
    (ii) the password starts with a digit and finishes with a digit, [2]
    (iii) the password starts with three symbols. [2]
    (b) The number of combinations of 5 objects selected from n objects is six times the number of combinations of 4 objects selected from n-1 objects. Find the value of n. [3]



  14. \text{ (a) } (i) number of ways to form different passwords ={}^8P_{6}=20160 ways.

    \quad\ (ii) number of ways to form different passwords starting with a digit and ending with a digit. ={}^5P_{2} \times{ }^{6}P_{4}=7200 ways.

    \quad\ (iii) number of ways to form different passwords starting with three symbols =3 ! \times {}^5P_{3}=360 ways.
    \begin{aligned} &\\ \text{ (b) } \hspace{2cm} { }^{n} C_{5} &=6 \times{ }^{n-1} C_{4} \\\\ \frac{n !}{5 !(n-5) !} &=6 \times \frac{(n-1) !}{4 !(n-1-4) !} \\\\ \frac{n(n-1) !}{5 \times 4 !(n-5) !} &=\frac{6 \times(n-1) !}{4 !(n-5) !} \\\\ \frac{n}{5} &=6 \\\\ n &=30 \end{aligned}

  15. Variables x and y are such that y=A x^{b}, where A and b are constants. When \lg y is plotted against \lg x, a straight line graph passing through the points (0.61,0.57) and (5.36,4.37) is obtained.
    (a) Find the value of A and of b. [5]
    Using your values of A and b, find
    (b) the value of y when x=3,
    [2]
    (c) the value of x when y=3. [2]



  16. \begin{aligned} \text{ (a) }\quad y &=A x^{b} \\\\ \lg y &=\lg \left(A x^{b}\right) \\\\ \lg y &=\lg A+b \lg x \\\\ 0.57 &=\lg A+0.616 \ldots(1) \\\\ 5.36 &=\lg A+4.37 b \ldots(2)\\\\ \end{aligned}
    \quad Solving equations (1) and (2)
    \begin{aligned} &\\ b &=0.8 \\\\ \lg A &=0.082 \\\\ A &=10^{0.082} \\\\ &=1.21\\\\ \therefore\ y&=1.21\left(x^{0.8}\right)\\\\ \text{ (b) }\quad \text{ When } x&=3\\\\ y &=1.21(3)^{0.8} \\\\ &=2.91 \\\\ \text{ (c) }\quad \text { When } y &=3, \\\\ 3 &=1.21\left(x^{0.8}\right) \\\\ x^{0.8} &=\frac{3}{1.21} \\\\ x &=\left(\frac{3}{1.21}\right)^{1.25} \\\\ &=3.11 \end{aligned}

  17. (a) The first three terms of an arithmetic progression are -4,8,20. Find the smallest number of terms for which the sum of this arithmetic progression is greater than 2000. [4]
    (b) The 7^{\text{ th}} and 9^{\text{ th}} terms of a geometric progression are 27 and 243 respectively. Given that the geometric progression has a positive common ratio, find
    (i) this common ratio, [2]
    (ii) the 30^{\text{ th}} term, giving your answer as a power of 3 . [2]
    (c) Explain why the geometric progression 1, \sin \theta, \sin ^{2} \theta, \ldots for -\dfrac{\pi}{2}<\theta<\dfrac{\pi}{2}, where \theta is in radians, has a sum to infinity. [2]



  18. \text{ (a) } \quad -4,8,20, \ldots is an A.P.
    \begin{aligned} &\\ \therefore\ a &=-4 \\\\ d &=8-(-4) \\\\ &=12 \\\\ S_{n} &>2000 \\\\ \frac{n}{2}\{2 a+(n-1) d\} &>2000 \\\\ \frac{n}{2}\{-8+(n-1) 12\} &>2000 \\\\ n\{-2+3 n-3\} &>1000\\\\ 3 n^{2}-5 n &>1000 \\\\ n^{2}-\frac{5}{3} n &>\frac{1000}{3} \\\\ n-\frac{5}{3} n+\left(\frac{5}{6}\right)^{2} &>\frac{1000}{3}+\left(\frac{5}{6}\right)^{2} \\\\ \left(n-\frac{5}{6}\right)^{2} &>334.03 \\\\ n-\frac{5}{6} &>18.28 \\\\ n &>19.1 \\\\ \therefore n &=20\\\\ \end{aligned}
    \therefore The smalles number of terms =20\\\\
    \text{ (b) } In a G.P,
    \begin{aligned} &\\ \text{ (i) } \quad u_{7} &=27 \\\\ a r^{6} &=27 \cdots(1) \\\\ u_{9} &=243 \\\\ a r^{8} &=243 \cdots(2) \\\\ \frac{a r^{8}}{a r^{6}}&= \frac{243}{27} \\\\ r^{2} &=9 \\\\ \therefore\ r &=3\\\\ \therefore\ a\left(3^{6}\right) &=27 \\\\ a &=\frac{3^{3}}{3^{6}} \\\\ &=\frac{1}{3^{3}} \\\\ u_{30} &=a r^{29} \\\\ &=\frac{1}{3^{3}} \times 3^{29} \\\\ &=3^{26}\\\\ \end{aligned}
    \text{ (c) } \quad 1, \sin \theta, \sin ^{2} \theta, \ldots is a GP, where
    \begin{aligned} &\\ &r =\frac{\sin \theta}{1} \\\\ &\ \ =\sin \theta \\\\ &\text { Since }-\frac{\pi}{2}<\theta <\frac{\pi}{2}\\\\ &\sin \left(-\frac{\pi}{2}\right)<\sin \theta <\sin \frac{\pi}{2} \\\\ &-1< r <1 \\\\ &\therefore\ |r| <1\\\\ \end{aligned}
    Hence, the series is convergent and sum to infinity exists.

  19. (a) Solve the equation \sin \alpha \operatorname{cosec}^{2} \alpha+\cos \alpha \sec ^{2} \alpha=0 for -\pi<\alpha<\pi, where \alpha is in radians. [4]
    (b) (i) Show that \dfrac{\cos \theta}{1-\sin \theta}+\dfrac{1-\sin \theta}{\cos \theta}=2 \sec \theta. [4]
    (ii) Hence solve the equation \dfrac{\cos 3 \phi}{1-\sin 3 \phi}+\dfrac{1-\sin 3 \phi}{\cos 3 \phi}=4 for 0^{\circ} \leq \phi \leq 180^{\circ}. [4]



  20. \begin{aligned} \text{ (a) }\quad\sin \alpha \operatorname{cosec}^{2} \alpha+\cos \alpha \sec ^{2} \alpha & =0,-\pi<\alpha<\pi\\\\ \frac{1}{\sin \alpha}+\frac{1}{\cos \alpha} &=0 \\\\ \frac{1}{\cos \alpha} &=-\frac{1}{\sin \alpha} \\\\ \therefore \frac{\sin \alpha}{\cos \alpha} &=-1 \\\\ \tan \alpha &=-1 \\\\ \alpha=-\frac{\pi}{4} \quad \text { or } \alpha &=\frac{3 \pi}{4}\\\\ \end{aligned}
    \begin{aligned} \text{ (b) (i) }\quad & \frac{\cos \theta}{1-\sin \theta}+\frac{1-\sin \theta}{\cos \theta} \\\\ =&\ \frac{\cos ^{2} \theta+1-2 \sin \theta+\sin ^{2} \theta}{(1-\sin \theta) \cos \theta} \\\\ =&\ \frac{2-2 \sin \theta}{(1-\sin \theta) \cos \theta} \\\\ =&\ \frac{2(1-\sin \theta)}{(1-\sin \theta) \cos \theta} \\\\ =&\ \frac{2}{\cos \theta}=2 \sec \theta\\\\ \end{aligned}
    \text{ (ii) }\quad\dfrac{\cos 3 \phi}{1-\sin 3 \phi}+\dfrac{1-\sin 3 \phi}{\cos 3 \phi}=4\\\\
    \qquad By part (i),
    \begin{aligned} &\\ \frac{2}{\cos 3 \phi} &=4 \\\\ \cos 3 \phi &=\frac{1}{2} \\\\ 3 \phi=60^{\circ} \text { or } 3 \phi &=300^{\circ} \text { or } 3 \phi=420^{\circ} \\\\ \phi=20^{\circ} \text { or } \phi &=100^{\circ} \text { or } \phi=140^{\circ} \end{aligned}

  21. The normal to the curve y=\dfrac{\ln \left(x^{2}+2\right)}{2 x-3} at the point where x=2 meets the y-axis at the point P. Find the coordinates of P. [7]



  22. \begin{aligned} \text{Curve }: y&=\dfrac{\ln \left(x^{2}+2\right)}{2 x-3}\\\\ \dfrac{d y}{d x} &=\dfrac{(2 x-3) \dfrac{d}{d x} \ln \left(x^{2}+2\right)-\ln \left(x^{2}+2\right) \dfrac{d}{d x}(2 x-3)}{(2 x-3)^{2}} \\\\ &=\dfrac{(2 x-3) \dfrac{2 x}{x^{2}+2}-2 \ln \left(x^{2}+2\right)}{(2 x-3)^{2}} \\\\ &=\dfrac{2}{(2 x-3)^{2}}\left[\dfrac{x(2 x-3)}{x^{2}+2}-\ln \left(x^{2}+2\right)\right]\\\\ \end{aligned}
    \begin{aligned} \left.\dfrac{d y}{d x}\right|_{x=2} &=\dfrac{2}{(4-3)^{2}}\left[\dfrac{2(4-3)}{4+2}-\ln (4+2)\right] \\\\ &=2\left[\dfrac{1}{3}-\ln 6\right] \\\\ &=\dfrac{2(1-3 \ln 6)}{3} \\\\ \therefore \text { Gradient of normal } &=-\dfrac{3}{2(1-3 \ln 6)} \\\\ &=\dfrac{3}{2(3 \ln 6-1)}\\\\ \text{ When } x&=2,\\\\ y&=\ln 6\\\\ \end{aligned}
    \therefore The equation of normal at (2, \ln 6) is
    \begin{aligned} &\\ y-\ln 6 &=\dfrac{3}{2(3 \ln 6-1)}(x-2) \\\\ y &=\dfrac{3}{2(3 \ln 6-1)}(x-2)+\ln 6\\\\ \text{ When } x&=0,\\\\ y &=\dfrac{3}{1-3 \ln 6}+\ln 6 \\\\ &=1.11\\\\ \end{aligned}
    \therefore The coordinates of the point P is (0,1.11).

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم