Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

Answer for 2019 Sample Question : Section (A)

 ဒီေနရာမွာ တင္ေပးခဲ့တဲ့ sample question Section (A) ရဲ့ အေျဖ ျဖစ္ပါတယ္။ Section (B), Section (C) တို႔ရဲ့ အေျဖကိုလဲ ဆက္လက္ တင္ေပးသြားပါ့မယ္။

Section (A)
Solution

1. (a) Let the function f(x)=12x1+x,x1. If g1(x)=f1(x+1), evaluate g(2).

Show/Hide Solution

f(x)=12x1+x,x1

Let g(2)=x then g1(x)=2.

f1(x+1)=2

f(2)=x+1

12(2)1+(2)=x+1

x+1=1

x=2

g(2)=2


1. (b) The expression (x+4)3+ax+b has a factor x+1 but leaves a remainder of 8 when divided by x+5. Find the values of a and b.

Show/Hide Solution

Let f(x)=(x+4)3+ax+b.

x+1 is a factor of f(x).

f(1)=0

(1+4)3+a(1)+b=0

ab=27      (1)

When f(x) is divided by x+5, the remainder is 8.

f(5)=8

(5+4)3+a(5)+b=0

5ab=1       (2)

By (2)(1),

4a=36a=9

9b=27b=36


2. (a) If the first four terms in the expansion of (x22)5 in descending powers of x are x1010x8+40x6+Ax4+..., find the value of A.

Show/Hide Solution

(x22)5=x1010x8+40x6+Ax4+...

Using the binomial theorem,

(x22)5=(x2)5+5(x2)4(2)+10(x2)3(2)2+10(x2)2(2)3+...

             =x1010x8+40x680x4+...

Equating the two equations, 

A=80


2. (b) In a geometric progression, u1=181 and u4=13. Find the common ratio.

Show/Hide Solution

Let the first term be a and the common ratio be r.

By the problem,

u1=181a=181

u4=13ar3=13

181r3=13

r3=27r=3


3. (a) Find the two matrices of the form P=(4x2   x22x1) such that P=P.

Show/Hide Solution

P=(4x2   x22x1)

P=(4x22x   x21)

By the problem, P=P

(4x2   x22x1)=(4x22x   x21)

x22x=x2

x23x+2=0

(x1)(x2)=0

x=1 or x=2


3.(b) A fair coin is tossed 5 times. What is the probability of getting at least one head?

Show/Hide Solution

For each toss,

P (head) = 12

P (tail) = 12

For 5 tosses,

P (getting all tail) =12×12×12×12×12=132

P(getting at least one head) = P(not getting all tail)

P(getting at least one head) = 1P(getting all tail)

P(getting at least one head) = 1132=3132



4. (a) In the figure, ABC=30°, AB=BC and AD is a tangent. Find BDA.

Show/Hide Solution
ABC=30° and AB=BC (given)

α=γ=12(180°30°)=75°

θ=γ=75° (∠ between tangent & chord = ∠ in alternate segment)

Since θ=ABC+BDA,

75°=30°+BDA

BDA=45°


4.(b) A,B, and C are with position vectors ˆi+3ˆj, 2ˆi+5ˆj and kˆi4ˆj  respectively. Find the value of k if  A,B, and C are collinear.

Show/Hide Solution

OA=2ˆi+3ˆj

OB=2ˆi+5ˆj

OC=kˆi4ˆj

Since A,B and C are collinear,

Let hAB=BC.

h(OBOA)=OCOB

  h(2ˆi+5ˆj+2ˆi3ˆj)=kˆi4ˆj2ˆi5ˆj

  4hˆi+2hˆj=(k2)ˆi9ˆj

2h=9h=92
   4h=k2k2=4(92)k=16


5. (a) Prove that (1tanx)2+(1cotx)2=(secxcosecx)2.

Show/Hide Solution

    (1tanx)2+(1cotx)2

=12tanx+tan2x+12cotx+cot2x

=(1+tan2x)+(1+cot2x)2(tanx+cotx)

=sec2x+cosec2x2(sinxcosx+cosxsinx)

=sec2x+cosec2x2(sin2x+cos2xsinxcosx)

=sec2x+cosec2x2sinxcosx

=sec2x2secxcosecx+cosec2x

=(secxcosecx)2


5. (b) Evaluate (i) lim   (ii) \displaystyle \underset{{x\to \pi }}{\mathop{{\lim }}}\,\frac{{\cos \frac{x}{2}}}{{\pi -x}}.

Show/Hide Solution

 (i)
\displaystyle \underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{{\sqrt[3]{x}-1}}{{x-1}}=\underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{{\sqrt[3]{x}-1}}{{{{{\left( {\sqrt[3]{x}} \right)}}^{3}}-{{1}^{3}}}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{{\sqrt[3]{x}-1}}{{\left( {\sqrt[3]{x}-1} \right)\left[ {{{{\left( {\sqrt[3]{x}} \right)}}^{2}}+\sqrt[3]{x}+1} \right]}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{1}{{{{{\left( {\sqrt[3]{x}} \right)}}^{2}}+\sqrt[3]{x}+1}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{3}

(ii)
\displaystyle \underset{{x\to \pi }}{\mathop{{\lim }}}\,\frac{{\cos \frac{x}{2}}}{{\pi -x}}

Let \displaystyle \pi -x=t, then \displaystyle x=\pi -t.

When \displaystyle x\to \pi ,\ t\to .

\displaystyle \therefore \underset{{x\to \pi }}{\mathop{{\lim }}}\,\frac{{\cos \frac{x}{2}}}{{\pi -x}}=\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\cos \frac{{\pi -t}}{2}}}{t}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\cos \left( {\frac{\pi }{2}-\frac{t}{2}} \right)}}{t}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\sin \frac{t}{2}}}{t}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\frac{1}{2}\sin \frac{t}{2}}}{{\frac{t}{2}}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\sin \frac{t}{2}}}{{\frac{t}{2}}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}(1)

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم