ဒီေနရာမွာ တင္ေပးခဲ့တဲ့ sample question Section (A) ရဲ့ အေျဖ ျဖစ္ပါတယ္။ Section (B), Section (C) တို႔ရဲ့ အေျဖကိုလဲ ဆက္လက္ တင္ေပးသြားပါ့မယ္။
1. (a) Let the function f(x)=1−2x1+x,x≠1. If g−1(x)=f−1(x+1), evaluate g(2).
f(x)=1−2x1+x,x≠−1
Let g(2)=x then g−1(x)=2.
∴f−1(x+1)=2
∴f(2)=x+1
∴1−2(2)1+(2)=x+1
∴x+1=−1
∴x=−2
∴g(2)=−2
1. (b) The expression (x+4)3+ax+b has a factor x+1 but leaves a remainder of 8 when divided by x+5. Find the values of a and b.
Let f(x)=(x+4)3+ax+b.
x+1 is a factor of f(x).
∴f(−1)=0
∴(−1+4)3+a(−1)+b=0
∴a−b=27 −−−−−(1)
When f(x) is divided by x+5, the remainder is 8.
∴f(−5)=8
∴(−5+4)3+a(−5)+b=0
∴5a−b=1 −−−−−(2)
By (2)−(1),
4a=−36⇒a=−9
∴−9−b=27⇒b=−36
2. (a) If the first four terms in the expansion of (x2−2)5 in descending powers of x are x10−10x8+40x6+Ax4+..., find the value of A.
(x2−2)5=x10−10x8+40x6+Ax4+...
Using the binomial theorem,
(x2−2)5=(x2)5+5(x2)4(−2)+10(x2)3(−2)2+10(x2)2(−2)3+...
=x10−10x8+40x6−80x4+...
Equating the two equations,
A=−80
2. (b) In a geometric progression, u1=181 and u4=13. Find the common ratio.
Let the first term be a and the common ratio be r.
By the problem,
u1=181⇒a=181
u4=13⇒ar3=13
∴181r3=13
∴r3=27⇒r=3
3. (a) Find the two matrices of the form P=(4x−2 x2−2x−1) such that P=P′.
P=(4x−2 x2−2x−1)
P′=(4x2−2x x−2−1)
By the problem, P=P′
∴(4x−2 x2−2x−1)=(4x2−2x x−2−1)
∴x2−2x=x−2
∴x2−3x+2=0
∴(x−1)(x−2)=0
∴x=1 or x=2
3.(b) A fair coin is tossed 5 times. What is the probability of getting at least one head?
For each toss,
P (head) = 12
P (tail) = 12
For 5 tosses,
P (getting all tail) =12×12×12×12×12=132
∴P(getting at least one head) = P(not getting all tail)
∴P(getting at least one head) = 1−P(getting all tail)
∴P(getting at least one head) = 1−132=3132
4. (a) In the figure, ∠ABC=30°, AB=BC and AD is a tangent. Find ∠BDA.
4.(b) A,B, and C are with position vectors ˆi+3ˆj, 2ˆi+5ˆj and kˆi−4ˆj respectively. Find the value of k if A,B, and C are collinear.
→OA=−2ˆi+3ˆj
→OB=2ˆi+5ˆj
→OC=kˆi−4ˆj
Since A,B and C are collinear,
Let h→AB=→BC.
∴h(→OB−→OA)=→OC−→OB
h(2ˆi+5ˆj+2ˆi−3ˆj)=kˆi−4ˆj−2ˆi−5ˆj
4hˆi+2hˆj=(k−2)ˆi−9ˆj
∴2h=−9⇒h=−92
4h=k−2⇒k−2=4(−92)⇒k=−16
5. (a) Prove that (1−tanx)2+(1−cotx)2=(secx−cosecx)2.
(1−tanx)2+(1−cotx)2
=1−2tanx+tan2x+1−2cotx+cot2x
=(1+tan2x)+(1+cot2x)−2(tanx+cotx)
=sec2x+cosec2x−2(sinxcosx+cosxsinx)
=sec2x+cosec2x−2(sin2x+cos2xsinxcosx)
=sec2x+cosec2x−2sinxcosx
=sec2x−2secxcosecx+cosec2x
=(secx−cosecx)2
5. (b) Evaluate (i) lim (ii) \displaystyle \underset{{x\to \pi }}{\mathop{{\lim }}}\,\frac{{\cos \frac{x}{2}}}{{\pi -x}}.
(i)
\displaystyle \underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{{\sqrt[3]{x}-1}}{{x-1}}=\underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{{\sqrt[3]{x}-1}}{{{{{\left( {\sqrt[3]{x}} \right)}}^{3}}-{{1}^{3}}}}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{{\sqrt[3]{x}-1}}{{\left( {\sqrt[3]{x}-1} \right)\left[ {{{{\left( {\sqrt[3]{x}} \right)}}^{2}}+\sqrt[3]{x}+1} \right]}}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{1}{{{{{\left( {\sqrt[3]{x}} \right)}}^{2}}+\sqrt[3]{x}+1}}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{3}
(ii)
\displaystyle \underset{{x\to \pi }}{\mathop{{\lim }}}\,\frac{{\cos \frac{x}{2}}}{{\pi -x}}
Let \displaystyle \pi -x=t, then \displaystyle x=\pi -t.
When \displaystyle x\to \pi ,\ t\to .
\displaystyle \therefore \underset{{x\to \pi }}{\mathop{{\lim }}}\,\frac{{\cos \frac{x}{2}}}{{\pi -x}}=\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\cos \frac{{\pi -t}}{2}}}{t}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\cos \left( {\frac{\pi }{2}-\frac{t}{2}} \right)}}{t}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\sin \frac{t}{2}}}{t}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\frac{1}{2}\sin \frac{t}{2}}}{{\frac{t}{2}}}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\sin \frac{t}{2}}}{{\frac{t}{2}}}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}(1)
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}
Section (A)
Solution
1. (a) Let the function f(x)=1−2x1+x,x≠1. If g−1(x)=f−1(x+1), evaluate g(2).
Show/Hide Solution
f(x)=1−2x1+x,x≠−1
Let g(2)=x then g−1(x)=2.
∴f−1(x+1)=2
∴f(2)=x+1
∴1−2(2)1+(2)=x+1
∴x+1=−1
∴x=−2
∴g(2)=−2
1. (b) The expression (x+4)3+ax+b has a factor x+1 but leaves a remainder of 8 when divided by x+5. Find the values of a and b.
Show/Hide Solution
Let f(x)=(x+4)3+ax+b.
x+1 is a factor of f(x).
∴f(−1)=0
∴(−1+4)3+a(−1)+b=0
∴a−b=27 −−−−−(1)
When f(x) is divided by x+5, the remainder is 8.
∴f(−5)=8
∴(−5+4)3+a(−5)+b=0
∴5a−b=1 −−−−−(2)
By (2)−(1),
4a=−36⇒a=−9
∴−9−b=27⇒b=−36
2. (a) If the first four terms in the expansion of (x2−2)5 in descending powers of x are x10−10x8+40x6+Ax4+..., find the value of A.
Show/Hide Solution
(x2−2)5=x10−10x8+40x6+Ax4+...
Using the binomial theorem,
(x2−2)5=(x2)5+5(x2)4(−2)+10(x2)3(−2)2+10(x2)2(−2)3+...
=x10−10x8+40x6−80x4+...
Equating the two equations,
A=−80
2. (b) In a geometric progression, u1=181 and u4=13. Find the common ratio.
Show/Hide Solution
Let the first term be a and the common ratio be r.
By the problem,
u1=181⇒a=181
u4=13⇒ar3=13
∴181r3=13
∴r3=27⇒r=3
3. (a) Find the two matrices of the form P=(4x−2 x2−2x−1) such that P=P′.
Show/Hide Solution
P=(4x−2 x2−2x−1)
P′=(4x2−2x x−2−1)
By the problem, P=P′
∴(4x−2 x2−2x−1)=(4x2−2x x−2−1)
∴x2−2x=x−2
∴x2−3x+2=0
∴(x−1)(x−2)=0
∴x=1 or x=2
3.(b) A fair coin is tossed 5 times. What is the probability of getting at least one head?
Show/Hide Solution
For each toss,
P (head) = 12
P (tail) = 12
For 5 tosses,
P (getting all tail) =12×12×12×12×12=132
∴P(getting at least one head) = P(not getting all tail)
∴P(getting at least one head) = 1−P(getting all tail)
∴P(getting at least one head) = 1−132=3132
4. (a) In the figure, ∠ABC=30°, AB=BC and AD is a tangent. Find ∠BDA.
Show/Hide Solution
4.(b) A,B, and C are with position vectors ˆi+3ˆj, 2ˆi+5ˆj and kˆi−4ˆj respectively. Find the value of k if A,B, and C are collinear.
Show/Hide Solution
→OA=−2ˆi+3ˆj
→OB=2ˆi+5ˆj
→OC=kˆi−4ˆj
Since A,B and C are collinear,
Let h→AB=→BC.
∴h(→OB−→OA)=→OC−→OB
h(2ˆi+5ˆj+2ˆi−3ˆj)=kˆi−4ˆj−2ˆi−5ˆj
4hˆi+2hˆj=(k−2)ˆi−9ˆj
∴2h=−9⇒h=−92
4h=k−2⇒k−2=4(−92)⇒k=−16
5. (a) Prove that (1−tanx)2+(1−cotx)2=(secx−cosecx)2.
Show/Hide Solution
(1−tanx)2+(1−cotx)2
=1−2tanx+tan2x+1−2cotx+cot2x
=(1+tan2x)+(1+cot2x)−2(tanx+cotx)
=sec2x+cosec2x−2(sinxcosx+cosxsinx)
=sec2x+cosec2x−2(sin2x+cos2xsinxcosx)
=sec2x+cosec2x−2sinxcosx
=sec2x−2secxcosecx+cosec2x
=(secx−cosecx)2
5. (b) Evaluate (i) lim (ii) \displaystyle \underset{{x\to \pi }}{\mathop{{\lim }}}\,\frac{{\cos \frac{x}{2}}}{{\pi -x}}.
Show/Hide Solution
(i)
\displaystyle \underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{{\sqrt[3]{x}-1}}{{x-1}}=\underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{{\sqrt[3]{x}-1}}{{{{{\left( {\sqrt[3]{x}} \right)}}^{3}}-{{1}^{3}}}}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{{\sqrt[3]{x}-1}}{{\left( {\sqrt[3]{x}-1} \right)\left[ {{{{\left( {\sqrt[3]{x}} \right)}}^{2}}+\sqrt[3]{x}+1} \right]}}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{x\to 1}}{\mathop{{\lim }}}\,\frac{1}{{{{{\left( {\sqrt[3]{x}} \right)}}^{2}}+\sqrt[3]{x}+1}}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{3}
(ii)
\displaystyle \underset{{x\to \pi }}{\mathop{{\lim }}}\,\frac{{\cos \frac{x}{2}}}{{\pi -x}}
Let \displaystyle \pi -x=t, then \displaystyle x=\pi -t.
When \displaystyle x\to \pi ,\ t\to .
\displaystyle \therefore \underset{{x\to \pi }}{\mathop{{\lim }}}\,\frac{{\cos \frac{x}{2}}}{{\pi -x}}=\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\cos \frac{{\pi -t}}{2}}}{t}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\cos \left( {\frac{\pi }{2}-\frac{t}{2}} \right)}}{t}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\sin \frac{t}{2}}}{t}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\frac{1}{2}\sin \frac{t}{2}}}{{\frac{t}{2}}}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}\underset{{t\to 0}}{\mathop{{\lim }}}\,\frac{{\sin \frac{t}{2}}}{{\frac{t}{2}}}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}(1)
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!