Processing math: 100%

Quadratic Functions : Exercise (5.2) Solutions



1.         Find the vertex form of each of the following quadratic functions. Find also y -intercept, axis of symmetry, vertex, and range of each of the functions.

           (a)  y=2x2+4x+3(b)  y=3x26x+2(c)  y=12x2+x4(d)  y=2x2+2x+3(e)  y=3x212x7(f)  y=12x23x4


           (a)y=2x2+4x+3

Show/Hide Solution



     y=2x2+4x+3     y=2(x2+2x+1)+1     y=2(x+1)2+1     When x=0, y=3      yintercept (0, 3).     Comparing with a(xh)2+k,     a=2, h=1, k =1      axis of symmetry:x=hx=1       vertex=(h,k)=(1,1)       range={y | y  k}={y | y  1}

           (b)y=3x26x+2

Show/Hide Solution

     y=3x26x+31     y=3(x22x+1)1     y=3(x1)21     When x=0, y=2      yintercept (0, 2).     Comparing with a(xh)2+k,     a=3, h=1, k =1      axis of symmetry: x=hx=1       vertex=(h,k)=(1,1)       range={y | y  k}={y | y  1}

           (c)y=12x2+x4

Show/Hide Solution


     y=12x2+x4     y=12x2+22x+1292     y=12(x2+2x+1)92     y=12(x+1)292     When x=0, y=4      yintercept (0, 4).     Comparing with a(xh)2+k,     a=12, h=1, k =92      axis of symmetry: x=hx=1       vertex=(h,k)=(1,92)       range={y | y  k}={y | y  92}

           (d) y=2x2+2x+3

Show/Hide Solution


     y=2x2+2x+3     y=2(x2x)+3     y=2(x22(12)x+14)+3+12     y=2(x12)2+72     When x=0, y=3      yintercept (0, 3).     Comparing with a(xh)2+k,     a=2, h=12, k =72      axis of symmetry: x=hx=12       vertex=(h,k)=(12,72)       range={y | y  k}={y | y  72}

           (e)y=3x212x7

Show/Hide Solution


y=3x212x7y=3(x2+4x)7y=3(x2+4x+4)7+12y=3(x+2)2+5Whenx=0,y=7yintercept(0,7).Comparing with a(xh)2+k,a=3,h=2,k=5axis of symmetry: x=hx=2vertex=(h,k)=(2,5)range={y|yk}={y|y5}

           (f)y=12x23x4

Show/Hide Solution




y=12x23x4y=12(x2+6x)4y=12(x2+2(3)x+9)4+92y=12(x+3)2+12Whenx=0,y=4yintercept(0,4).Comparing with a(xh)2+k,a=12,h=3,k=12axis of symmetry: x=hx=3vertex=(h,k)=(3,12)range={y|yk}={y|y12}


2.         Find two positive numbers whose sum is 20 and whose product is as large as possible.

Show/Hide Solution

Let the two positive numbers be x and y.

By the problem,

x+y=20

 y=20x

Let the product of the numbers be p.

Hence,

p=xy=x(20x)=20xx2=(x220x)=(x220x+100)+100=100(x10)2 p100

Thus, maximum value of p is 100 when (x10)2=0.

 x=10.

When x=10,y=20x=2010=10.

Therefore, the twopositive numbers are x=10 and y=10.


3.         What is the largest area possible for a rectangle whose perimeter is 16 cm?

Show/Hide Solution

Let the lenght and breadth of the rectangle be x and y respectively.

By the problem,

2x+2y=16

 y=8x

Let the area of the rectangle be A.

Hence,

A=xy=x(8x)=8xx2=(x28x)=(x224x+16)+16=16(x4)2 A16

Thus, the maximum area (A) of the rectangle is 16 cm².


စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم