1. Find the vertex form of each of the following quadratic functions. Find also y -intercept, axis of symmetry, vertex, and range of each of the functions.
(a) y=2x2+4x+3(b) y=3x2−6x+2(c) y=12x2+x−4(d) y=−2x2+2x+3(e) y=−3x2−12x−7(f) y=−12x2−3x−4
(a)y=2x2+4x+3
Show/Hide Solution
(b)y=3x2−6x+2
Show/Hide Solution
(c)y=12x2+x−4
Show/Hide Solution
(d) y=−2x2+2x+3
Show/Hide Solution
(e)y=−3x2−12x−7
Show/Hide Solution
(f)y=−12x2−3x−4
Show/Hide Solution
2. Find two positive numbers whose sum is 20 and whose product is as large as possible.
Show/Hide Solution
Let the two positive numbers be x and y.
By the problem,
x+y=20
∴ y=20−x
Let the product of the numbers be p.
Hence,
p=xy=x(20−x)=20x−x2=−(x2−20x)=−(x2−20x+100)+100=100−(x−10)2∴ p≤100
Thus, maximum value of p is 100 when (x−10)2=0.
∴ x=10.
When x=10,y=20−x=20−10=10.
Therefore, the twopositive numbers are x=10 and y=10.
By the problem,
x+y=20
∴ y=20−x
Let the product of the numbers be p.
Hence,
p=xy=x(20−x)=20x−x2=−(x2−20x)=−(x2−20x+100)+100=100−(x−10)2∴ p≤100
Thus, maximum value of p is 100 when (x−10)2=0.
∴ x=10.
When x=10,y=20−x=20−10=10.
Therefore, the twopositive numbers are x=10 and y=10.
3. What is the largest area possible for a rectangle whose perimeter is 16 cm?
Show/Hide Solution
Let the lenght and breadth of the rectangle be x and y respectively.
By the problem,
2x+2y=16
∴ y=8−x
Let the area of the rectangle be A.
Hence,
A=xy=x(8−x)=8x−x2=−(x2−8x)=−(x2−2⋅4⋅x+16)+16=16−(x−4)2∴ A≤16
Thus, the maximum area (A) of the rectangle is 16 cm².
By the problem,
2x+2y=16
∴ y=8−x
Let the area of the rectangle be A.
Hence,
A=xy=x(8−x)=8x−x2=−(x2−8x)=−(x2−2⋅4⋅x+16)+16=16−(x−4)2∴ A≤16
Thus, the maximum area (A) of the rectangle is 16 cm².
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!