Solve the following equations.
1.32x−3=272x2.5x2−9=13.5x+1=16254.(12)x=645.23x⋅4x+1=1286.3x+1⋅92−x=1277.272x35−x=32x+19x+38.8x−1=(132)x+19.10−x=0.00000110.4x+4x+1=2011.4⋅22x+3⋅2x−1=0
1.32x−3=272x2.5x2−9=13.5x+1=16254.(12)x=645.23x⋅4x+1=1286.3x+1⋅92−x=1277.272x35−x=32x+19x+38.8x−1=(132)x+19.10−x=0.00000110.4x+4x+1=2011.4⋅22x+3⋅2x−1=0
Show/Hide Solution
1.32x−3=272x 32x−3=(33)2x 32x−3=36x ∴ 2x−3=6x ∴ 8x=3 ∴ x=382.5x2−9=1 5x2−9=50 ∴ x2−9=0 x2=9 ∴ x=±33.5x+1=1625 5x+1=154 5x+1=5−4 ∴ x+1=−4 ∴ x=−54.(12)x=64 2−x=26 ∴ −x=6 ∴ x=65.23x⋅4x+1=128 23x⋅(22)x+1=27 25x+2=27 ∴ 5x+2=7 ∴ 5x=5 ∴ x=16.3x+1⋅92−x=127 3x+1⋅(32)2−x=133 35−x=3−3 ∴ 5−x=−3 ∴ x=8 ∴ x=17.272x35−x=32x+19x+3 (33)2x35−x=32x+1(32)x+3 37x−5=3−5 ∴ 7x−5=−5 ∴ x=0 ∴ x=18.8x−1=(132)x+1 (23)x−1=(125)x+1 23x−3=2−5x−5 ∴ 3x−3=−5x−5 ∴ 8x=8 ∴ x=19.10−x=0.000001 10−x=11000000 10−x=1106 10−x=10−6 ∴ −x=−6 ∴ x=610. 10−x=0.000001 10−x=11000000 10−x=1106 10−x=10−6 ∴ −x=−6 ∴ x=611. 4⋅22x+3⋅2x−1=0 4⋅(2x)2+3⋅2x−1=0 Let 2x=a, then we have ∴ 4a2+3a−1=0 ∴ (4a−1)(a+1)=0 ∴ a=14 or a=−1 ∴ 2x=14 or 2x=−1 (impossible) Since 2x>0, 2x=−1 is impossible. ∴ 2x=14=122=2−2∴ x=−2
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!