1. Write the following in radical form.
(a)(5)12(b)(−9)13(c)(2)−12(d)(−34)25(e)(27)52
(a)(5)12(b)(−9)13(c)(2)−12(d)(−34)25(e)(27)52
Show/Hide Solution
(a) (5)12=√5(b) (−9)13=3√−9(c) (2)−12=1(2)12=1√2(d) (−34)25=5√(−34)2=5√916(e) (27)52=√(27)5=√3216807
2. Write the following in fractional exponent form.
(a)6√c5(b)3√−2(c)5√a43√b5(d)4√(37)3
(a)6√c5(b)3√−2(c)5√a43√b5(d)4√(37)3
Show/Hide Solution
(a) 6√c5=c56(b) 3√−2=(−2)13(c) 5√a43√b5=5√a4b53=(a4b53)15=a45b13(d) 4√(37)3=(37)34
3. Change the expression with the same radical and simplify the radicands.
(a)6√2(b)3a3√x(c)25√2(d)4√12(e)3√x3
(a)6√2(b)3a3√x(c)25√2(d)4√12(e)3√x3
Show/Hide Solution
(a)6√2=√62⋅2=√72(b)3a3√x=3√33⋅a3x=3√27a3x(c)25√2=5√25⋅2=5√64(d)34√12=4√34⋅12=4√812(e)3√x3=√32⋅x3=√9x3
4. Simplify.
(a)√32(b)5√−32(c)4√81x1616y4(d)3√81x24y(e) 9123√27(f)√23⋅√7598(g)3√−2168×103(h)n√3225+n
(a)√32(b)5√−32(c)4√81x1616y4(d)3√81x24y(e) 9123√27(f)√23⋅√7598(g)3√−2168×103(h)n√3225+n
Show/Hide Solution
(a)√32=√16⋅2=4√2(b)5√−32=5√(−2)5=−2(c)4√81x1616y4=4√34(x4)424⋅y4=3x42y(d)3√81x24y=3√33⋅3x24y=33√3x24y(e)9123√27=(32)123√33=33=1(f)√23⋅√7598=√23×7598=√2549=57(g)3√−2168×103=3√(−6)323×103=−62×10=−310(h)4√3225+n=n√2525+n=n√12n=12
5. Rationalize the denominators.
(a)4√353√7(b)20√5(c)183√2(d)3√324√27(e)3√36a23√9a(f)3√26√12(g)13√xy2(h)m√2x2y3m9x5y4m−1
(a)4√353√7(b)20√5(c)183√2(d)3√324√27(e)3√36a23√9a(f)3√26√12(g)13√xy2(h)m√2x2y3m9x5y4m−1
Show/Hide Solution
(a) 4√353√7 =43√357 =43√7×57 =4√53(b) 20√5 =20√5×√5√5 =20√55 =4√5(c) 183√2 =183√2×3√223√22 =183√43√23 =183√42 =93√4(d) 3√324√27 =3√23⋅44√33×4√34√3 =23√44√33(e) 3√36a23√9a =3√36a29a =3√4a(f) 3√26√12 =3√26√22⋅6√3 =3√23√2⋅6√3×6√356√35 =6√2433(g) 13√xy2 =13√xy2×3√x2y3√x2y =3√x2y3√x3y3 =3√x2yxy(h) m√2x2y3m9x5y4m−1 =m√2y32x3ym = m√2ym√32x3ym =m√2yym√32x3×m√3m−2xm−3m√3m−2xm−3 =m√2⋅3m−2xm−3y3xy
6. Reduce the order as far as possible.
(a)4√25(b)6√4(c)6√8(d)9√8y3(e)6√273(f)8√a2b4(g)12√64a2b6(h)(72)35(i)3√768
(a)4√25(b)6√4(c)6√8(d)9√8y3(e)6√273(f)8√a2b4(g)12√64a2b6(h)(72)35(i)3√768
Show/Hide Solution
(a)4√25=4√52=√5(b)6√4=6√22=3√2(c)6√8=6√23=√2(d)9√8y3=9√23⋅y3=3√2y(e)6√273=√27=3√3(f)8√a2b4=4√ab2(g)12√64a2b6=12√82⋅a2b6=6√8ab3(h)(72)35=5√723=5√(32⋅23)3=5√36⋅29=65√3⋅16=65√48(i)3√768=3√43⋅12=43√12
7. Find the simplified forms.
(a)√950(b)3√−19249(c)4√16(d)23√56
(a)√950(b)3√−19249(c)4√16(d)23√56
Show/Hide Solution
(a)√950=√3252⋅2=35√2×√2√2=3√210(b)3√−19249=3√(−4)3⋅372×77=−43√217(c)4√16=4√24=2(d)23√56=23√23⋅7=43√7
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!