1. Given that log2.345=0.3701. What are the characteristics and the mantissas of each of the followings?
(a) log234,500
(b) log0.0002345
(a) log234,500
(b) log0.0002345
Show/Hide Solution
log2.345=0.3701(a) log234,500 =log(2.345×105) =log105+log2.345 =5+0.3701 =5.3701∴ characteristic=5 mantissa=.3701(b) log0.0002345 =log(2.345×10−4) =log10−4+log2.345 =−4+0.3701∴ characteristic=−4 mantissa=.3701
2. Using log102.74=0.4377,log102.83=0.4518,log105.97=0.7760, log106.21=0.7931,log108.18=0.9128 and log109.27=0.9671, compute
(a) (28.3597×621)2
(b) 27413927×818
(c) 28.3√0.621597
(a) (28.3597×621)2
(b) 27413927×818
(c) 28.3√0.621597
Show/Hide Solution
log102.74=0.4377, log102.83=0.4518, log105.97=0.7760, log106.21=0.7931, log108.18=0.9128, log109.27=0.9671.(a) Let x=(28.3597×621)2, then logx=log(28.3597×621)2 =2log(28.3597×621) =2(log28.3−log(597×621)) =2(log28.3−log597−log621) =2(log28.3−log597−log621) =2(1.4518−2.7760−2.7931) =−8.2346 x=10−8.2346(b) Let x=27413927×818, then logx=log(27413927×818) =13log274−log(927×818) =13log274−(log927+log818) =13(2.4377)−2.9671−2.9128 =−5.0673 x=10−5.0673(c) Let x=28.3√0.621597, then logx=log(28.3√0.621597) =log28.3+12log0.621−log597 =1.4518+12(−1+0.7931)−2.7760 =−1.4277 x=10−1.4277
3. Express each to a natural logarithm in terms of ln2 and ln5.
(a) log825
(b) log564
(c) log25100
(a) log825
(b) log564
(c) log25100
Show/Hide Solution
(a) log825 =ln25ln8 =ln52ln23 =2ln53ln2(b) log564 =ln64ln5 =ln26ln5 =6ln5ln2(c) log25100 =ln100ln25 =ln(52×22)ln52 =2ln5+2ln22ln5 =1+ln2ln5
4. Write each expression as a single logarithm.
(a) 3ln(t+5)−4lnt−2ln(s−1)
(b) 2lnx+5lny−12lnz
(c) 13lna−6lnb+2
(a) 3ln(t+5)−4lnt−2ln(s−1)
(b) 2lnx+5lny−12lnz
(c) 13lna−6lnb+2
Show/Hide Solution
(a) 3ln(t+5)−4lnt−2ln(s−1) =ln(t+5)3−lnt4−ln(s−1)2 =ln(t+5)3t4(s−1)2(b) 2lnx+5lny−12lnz =lnx2+lny5−ln√z =lnx2⋅y5√z(c) 13lna−6lnb+2 =lna13−lnb6+lne2 =ln3√a⋅e2b6
5. Solve the following logarithmic equations for x.
(a) ln(x)+ln(x+3)=ln(20−5x)
(b) 2ln(√x)−ln(1−x)=2
(a) ln(x)+ln(x+3)=ln(20−5x)
(b) 2ln(√x)−ln(1−x)=2
Show/Hide Solution
(a) ln(x)+ln(x+3)=ln(20−5x) ln(x(x+3))=ln(20−5x) x(x+3)=20−5x x2+8x−20=0 (x+10)(x−2)=0 x=−10 or x=2 Since x>0, x=−10 is impossible. ∴ x=2 (b) 2ln(√x)−ln(1−x)=2 ln((√x)21−x)=2 x1−x=e2 x=e2−e2x e2x+x=e2 x(e2+1)=e2 x=e2e2+1
6. Solve the equations:
(a) x−xe5x+2=0
(b) 7+15e1−3x=10 using ln5=1.6094.
(c) 4e1+3x−9e5−2x=0 using ln2=0.6931 and ln3=1.0986.
No(3) မှ No(6) အထိ မေးခွန်းများသည် ပြဌာန်းစာအုပ်တွင် မပါဝင်ပါ Natural Logarithm ဆိုင်ရာ ပုစ္တာများကို တိုးချဲ့လေ့ကျင့်နိုင်ရန် ပေါင်းထည့်ပေးထားခြင်း ဖြစ်ပါသည်။
(a) x−xe5x+2=0
(b) 7+15e1−3x=10 using ln5=1.6094.
(c) 4e1+3x−9e5−2x=0 using ln2=0.6931 and ln3=1.0986.
No(3) မှ No(6) အထိ မေးခွန်းများသည် ပြဌာန်းစာအုပ်တွင် မပါဝင်ပါ Natural Logarithm ဆိုင်ရာ ပုစ္တာများကို တိုးချဲ့လေ့ကျင့်နိုင်ရန် ပေါင်းထည့်ပေးထားခြင်း ဖြစ်ပါသည်။
Show/Hide Solution
(a) x−xe5x+2=0 x(1−e5x+2)=0 x=0 or 1−e5x+2=0 x=0 or e5x+2=1 x=0 or 5x+2=ln1 x=0 or 5x+2=0 ∴ x=0 or x=−25 (b) 7+15e1−3x=10 15e1−3x=3 e1−3x=15 1−3x=ln(15) 1−3x=ln(5−1) 1−3x=−ln(5) 3x=1+ln(5) 3x=1+1.6094 3x=2.6094 x=0.8698(c) 4e1+3x−9e5−2x=0 4e1+3x=9e5−2x e1+3xe5−2x=94 e5x−4=94 5x−4=ln3222 5x=2(ln3−ln2)+4 x=25(ln3−ln2+2) x=25(1.0986−0.6931+2) x=0.9622
စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!