Processing math: 100%

Logarithms : Exercise (3.5) - Solutions

1.          Given that log2.345=0.3701. What are the characteristics and the mantissas of each of the followings?

(a) log234,500

(b) log0.0002345

Show/Hide Solution

        log2.345=0.3701(a)   log234,500   =log(2.345×105)   =log105+log2.345   =5+0.3701   =5.3701 characteristic=5   mantissa=.3701(b)   log0.0002345   =log(2.345×104)   =log104+log2.345   =4+0.3701 characteristic=4   mantissa=.3701

2.          Using log102.74=0.4377,log102.83=0.4518,log105.97=0.7760, log106.21=0.7931,log108.18=0.9128 and log109.27=0.9671, compute

(a) (28.3597×621)2

(b) 27413927×818

(c) 28.30.621597

Show/Hide Solution

     log102.74=0.4377,     log102.83=0.4518,     log105.97=0.7760,     log106.21=0.7931,     log108.18=0.9128,     log109.27=0.9671.(a)  Let x=(28.3597×621)2, then     logx=log(28.3597×621)2            =2log(28.3597×621)            =2(log28.3log(597×621))            =2(log28.3log597log621)            =2(log28.3log597log621)            =2(1.45182.77602.7931)            =8.2346     x=108.2346(b)  Let x=27413927×818, then     logx=log(27413927×818)            =13log274log(927×818)            =13log274(log927+log818)            =13(2.4377)2.96712.9128            =5.0673     x=105.0673(c)  Let x=28.30.621597, then     logx=log(28.30.621597)            =log28.3+12log0.621log597            =1.4518+12(1+0.7931)2.7760            =1.4277     x=101.4277

3.          Express each to a natural logarithm in terms of ln2 and ln5.

(a) log825

(b) log564

(c) log25100

Show/Hide Solution

(a)    log825     =ln25ln8    =ln52ln23    =2ln53ln2(b)    log564     =ln64ln5    =ln26ln5    =6ln5ln2(c)    log25100     =ln100ln25    =ln(52×22)ln52    =2ln5+2ln22ln5  =1+ln2ln5   

4.          Write each expression as a single logarithm.

(a) 3ln(t+5)4lnt2ln(s1)

(b) 2lnx+5lny12lnz

(c) 13lna6lnb+2

Show/Hide Solution

(a)    3ln(t+5)4lnt2ln(s1)    =ln(t+5)3lnt4ln(s1)2    =ln(t+5)3t4(s1)2(b)    2lnx+5lny12lnz    =lnx2+lny5lnz    =lnx2y5z(c)    13lna6lnb+2    =lna13lnb6+lne2    =ln3ae2b6

5.          Solve the following logarithmic equations for x.

(a) ln(x)+ln(x+3)=ln(205x)

(b) 2ln(x)ln(1x)=2

Show/Hide Solution

(a)  ln(x)+ln(x+3)=ln(205x)       ln(x(x+3))=ln(205x)      x(x+3)=205x      x2+8x20=0      (x+10)(x2)=0      x=10 or x=2      Since x>0, x=10 is impossible.     x=2     (b)   2ln(x)ln(1x)=2      ln((x)21x)=2     x1x=e2      x=e2e2x     e2x+x=e2     x(e2+1)=e2     x=e2e2+1

6.          Solve the equations:

(a) xxe5x+2=0

(b) 7+15e13x=10 using ln5=1.6094.

(c) 4e1+3x9e52x=0 using ln2=0.6931 and ln3=1.0986.

No(3) မှ No(6) အထိ မေးခွန်းများသည် ပြဌာန်းစာအုပ်တွင် မပါဝင်ပါ Natural Logarithm ဆိုင်ရာ ပုစ္တာများကို တိုးချဲ့လေ့ကျင့်နိုင်ရန် ပေါင်းထည့်ပေးထားခြင်း ဖြစ်ပါသည်။

Show/Hide Solution

(a)   xxe5x+2=0       x(1e5x+2)=0      x=0 or 1e5x+2=0      x=0 or e5x+2=1      x=0 or 5x+2=ln1      x=0 or 5x+2=0     x=0 or x=25     (b)   7+15e13x=10       15e13x=3      e13x=15       13x=ln(15)      13x=ln(51)      13x=ln(5)      3x=1+ln(5)      3x=1+1.6094      3x=2.6094      x=0.8698(c)   4e1+3x9e52x=0     4e1+3x=9e52x     e1+3xe52x=94     e5x4=94     5x4=ln3222     5x=2(ln3ln2)+4     x=25(ln3ln2+2)     x=25(1.09860.6931+2)     x=0.9622

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم