Loading [MathJax]/jax/output/HTML-CSS/jax.js

Arithmetic Progression : Problems and Solutions - Part (2)

Post တစ်ပုဒ်ထဲမှာ math loading (rendering) ကြာနေသောကြောင့် နှစ်ပိုင်း ခွဲလိုက်ရပါတယ်။

  1. If pth ,qth  and rth  term of an A.P. are a,b,c respectively, then show that (ab)r +(bc)p +(ca)q=0.


  2. Let the first term and the comnon difference of given A.P. be A and D.
    By the proldem,
    up=a
    A+(p1)D=a
    uq=b
    A+(q1)D=b
    ur=c
    A+(r1)D=c
     (ab)r=(pq)Dr
    =(prqr)D(1)
     (pc)p=(qr)Dp
    =(pqpr)D(2)
     (ca)q=(rp)Dq
    =(qrpq)D(3)
    Summing equations (1),(2) and (3)
    (ab)r+(bc)p+(ca)q=0

  3. Show that the sum of (m+n)th  and (mn)th  term of an A.P is equal to twice the mth  term.


  4. Let the first tern be a and the common difference be d for the given A.P.
     um+n=a+(m+n1)d
     umn=a+(mn1)d
     um+n+umn=2a+(2n1)d
    =2[a+(m1)d]
    =2um

  5. If (m+1)th  term of an AP is twice the (n+1)th  term, prove that (3m+1)th  term is twice the (m+n+1)th  term.


  6. Let the first tern be a and the common difference be d for the given A.P.
    By the problem,
    um+1=2un+1
    a+md=2(a+nd)
    a+md=2a+2nd
    a=md2nd
    um+n+1=a+(m+n)d
    =md2nd+md+nd
    =2mdnd
    u3m+1=a+3md
    =md2nd+3md
    =4md2nd
    =2(2mdnd)
    =2um+n+1

  7. The digits of a positive integer having three digits are in A.P. The sum of the digits is 15 and the number obtained by reversing the digits is 594 less than the original number. Find the number.


  8. Let the hundredis digit, ten's digit and one's digit of a positive integer be a,b and c respectively.
    By the problem,
    a,b,c are in A.P.
     a=a
     b=a+d
     c=a+2d
     a+b+c=15 (given)
     3a+3d=15
     a+d=5b=5
    given integer =100a+10b+c
    Original neumber - New formed nunber =594
    100a+10b+c(100c+10b+a)=594
    99a99c=594
     ac=6
    2d=6
    d=3
     a3=5
     a=8
     c=2
    The number is 852.

  9. If b+caa,c+abb,a+bcc are in A.P., then prove that 1a, 1b, 1c are in A.P.


  10. b+caa,c+abb,a+bcc are in A.P.

    c+abbb+caa=a+bccc+abb

    c+ab1b+ca+1=a+bc1c+ab+1

    c+abb+ca=a+bcc+ab

    a2+acb2bcab=b2+abc2acbc

    a2b2+acbca=b2c2+abacc

    (ab)(a+b)+c(ab)a=(bc)(b+c)+a(bc)c

    (ab)(a+b+c)a=(bc)(a+b+c)c

    aba=bcc

     acbc=abac

     acabcbcabc=ababcacabc

     1b1a=1c1b

     1a,1b,1c is an A.P.

  11. If a,b,c are in A.P., then prove that (ac)2=4(b2ac).


  12.  a,b,c are in A.P.
     ba=cb
     a+c=2b
     a+c2c=2b2c
     ac=2(bc)
     (ac)2=4(bc)2
     (ac)2=4(b22bc+c2)
    =4(b2(a+c)c+c2)
    =4(b2acc2+c2)
    =4(b2ac)

  13. If a,b,c are in A.P., then prove that b+c,c+a,a+b are also in A.P.


  14.  a,b,c are in A.P.
     ba=cb
     2b=c+a
     2b+c+a=c+a+c+a
     (b+c)+(a+b)=(c+a)+(c+a)
     (c+a)(b+c)=(a+b)(c+a)
     b+c,c+a,a+b are in A.P.

  15. If a,b,c are in A.P., then prove that 1bc, 1ca, 1ab are also in A.P.


  16. a,b,c are in A.P. ba=cbbabcaabc=cabcbabc1ac1bc=1ab1ac1bc, 1ca, 1ab  are in A.P.

  17. If a,b,c are in A.P., then prove that (b+ca),(c+ab),(a+bc) are in AP.


  18. a,b,c are in A.P. ba=cbab=bc2a2b=2b2cc+2a2bc=a+2b2cac+abbc+a=a+bcca+b(c+ab)(b+ca)=(a+bc)(c+ab) b+ca), (c+ab), (a+bc)  are in A.P.

  19. If a,b,c are in A.P., then prove that a2(b+c), b2(c+a), c2(a+b) are also in A.P.


  20. a,b,c are in A.P. ba=cb a+c=2ba2(b+c)+c2(a+b)=a2b+a2c+c2a+c2b=a2b+ca(a+c)+c2b=ab+ca(2b)+c2b=a2b+2abc+cb=a2b+abc+abc+c2b=ab(a+c)+bc(a+c)=ab(2b)+bc(2b)=2ab2+2b2c=2b2(c+a) 2b2(c+a)=a2(b+c)+c2(a+b) b2(c+a)+b2(c+a)=a2(b+c)+c2(a+b) b2(c+a)a2(b+c)=c2(a+b)b2(c+a) a2(b+c),b2(c+a),c2(a+b) are in A.P.

  21. If a,b,c are in A.P., then prove that bca2, cab2, abc2 are in AP.


  22. a,b,c are in A.P. ba=cb (ba)(a+b+c)=(cb)(a+b+c)(ba)(b+a)+(ba)c=(cb)(c+b)+(cb)ab2a2+bcca=c2b2+caab(bca2)(cab2)=(cab2)(abc2)Multiply both sides with 1,(cab)2(bca2)=(abc2)(cab2) bca2,cab2,abc2 are in A.P.

  23. If a,b,c are in A.P., then prove that 1b+c, 1c+a, 1a+b are also in A.P.


  24. a, b, c are in A.P. ba=cb(b)2(a)2=(e)2(b)2(ba)(b+a)=(cb)(c+b)bab+c=cba+b(b+c)(a+c)b+c=(a+c)(a+b)a+b1a+cb+c=a+ca+b1 Dividing both sides with a+c1a+c1b+c=1a+b1a+c 1b+c,1a+c,1a+b are in A.P 

  25. If a,b,c are in A.P., then prove that a(1b+1c), b(1c+1a), c(1a+1b) are also in A.P.


  26. a, b, c  ane in A.P. ba=cb a+c=2ba(1b+1c)+c(1a+1b)=ab+ac+ca+cb=a+cb+ac+ca=2bb+a2+c2ac=2+a2+c2ac=2+(a+c)22acac=2+(a+c)2ac2=(a+c)2ac=(a+c)(a+cac)=2b(1c+1a) 2b(1c+1a)=a(1b+1c)+c(1a+1b)b(1c+1a)+b(1c+1a)=a(1b+1c)+c(1a+1b)b(1c+1a)a(1b+1c)=c(1a+1b)b(1c+1a) a(1b+1c),b(1c+1a),c(1a+1b) are in A.P.

  27. If a2,b2,c2 are in A.P., then prove that 1b+c, 1c+a, 1a+b are also in A.P.


  28. a2,b2,c2 are in A.P. b2a2=c2b2(b+a)(ba)=(c+b)(cb)bab+c=cba+b(b+c)(c+a)b+c=(c+a)(a+b)a+b1c+ab+c=c+aa+b1 Dividing both sides with c+a1c+a1b+c=1a+b1c+a 1b+c,1c+a,1a+b are in A.P.

  29. If a2, b2, c2 are in A.P., then prove that ab+c, bc+a, ca+b are also in A.P.


  30. a2,b2,c2 are in A.P. b2a2=c2b2(b+a)(ba)=(c+b)(cb)bab+c=cba+b(b+c)(c+a)b+c=(c+a)(a+b)a+b1c+ab+c=c+aa+b1 Dividing both sides with c+a1c+a1b+c=1a+b1c+a Multiplying both sides with a+b+c,a+b+cc+aa+b+cb+c=a+b+ca+ba+b+cc+ac+ac+a+bc+aab+cb+cb+c=a+ba+b+ca+bc+ac+abc+a1+bc+aab+c1=1+ca+b1bc+abc+aab+c=ca+bbc+aab+c,bc+a,ca+b are in A.P. 

  31. If the mth  term of an A.P. is 1n and nth  term is 1m, then show that umn=1.


  32. Let the first term and the common difference of the given A.P. be a and d respectively.
    um=1n
    a+(m1)d=1n(1)
    un=1m
    a+(n1)d=1m(2)
    (1)(2)(mn)d=1n1m
    (mn)d=mnmn
    d=1mn
    a+(m1)1mn=1n
    a=1nm1mn
    =mm+1mn
    =1mn
    umn=a+(mn1)d
    =1mn+(mn1)1mn
    =1mn+11mn
    =1

  33. If the pth  term of an A.P. is q and the qth  term is p, find its nth  term in terms of p,q and n.


  34. Let the first term=athe common difference=dup=qa+(p1)d=q(1)uq=pa+(q1)d=p(2)(1)(2)(pq)d=qp(pq)d=(pq)d=1a+(p1)(1)=qun=a+(n1)d=p+q1+(n1)(1)=p+qn

  35. If log102,log10(2x1) and log10(2x+3) are three consecutive terms of an A.P., find the value of x.


  36. log102,log10(2x1) and log10(2x+3) are in A.P. log10(2x1)log102=log10(2x+3)log10(2x1)log10(2x12)=log10(2x+32x1)2x12=2x+32x1(2x1)2=22x+6(2x)222x+1=22x+6(2x)242x5=0(2x+1)(2x5)=0For 2x=1, which is not possible for every xR.For 2x=5, x=log25

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
Previous Post Next Post