Loading [MathJax]/jax/output/HTML-CSS/jax.js

May-June-21-CIE-9709-11 : AS and A Level - Problems and Solutions

2021 (May-June) CIE (9709-Pure Mathematics 1), Paper 1/11 ၏ Question နှင့် Solution များ ဖြစ်ပါသည်။ Question Paper ကို ဒီနေရာမှာ Download ယူနိုင်ပါသည်။

  1. The equation of a curve is such that dydx=3x4+32x3. It is given that the curve passes through the point (12,4). Find the equation of the curve. [4]



  2. dydx=3x4+32x3y=(3x4+32x3)dx=3x4dx+32x3dx=1x3+8x4+C
    The curve passes through the point (12,4).
     4=1(12)3+8(12)4+c4=8+12+cc=232y=1x3+8x4+232

  3. The sum of the first 20 terms of an arithmetic progression is 405 and the sum of the first 40 terms is 1410 .Find the 60th term of the progression. [5]



  4. Let the first term be a, the common difference be d and the sum to first n terms be Sn of given A.P.
     S20=405202{2a+19d}=4052a+19d=40.5(1)S40=1410402{2a+39d}=14102a+39d=70.5(2)
    Solving equation (1) and (2),
    a=6,d=32 60th  term =a+59d=6+59×32=94.5

  5. (a) Find the first three terms in the expansion of (32x)5 in ascending powers of x. [3]
    (b) Hence find the coefficient of x2 in the expansion of (4+x)2(32x)5.[3] [4]



  6. (32x)5=355(34)(2x)+10(33)(2×)2+=243810x+1080x2+(4+x)2=16+8x+x2(4+x)2(3+2x)5=(16+8x+x2)(2y3810x+1080x2+) Coefficient of x2 in the expansion of (4+x)2(3+2x)5=16(1080)8(80)+1(243)=11043


  7. The diagram shows part of the graph of y=atan(xb)+c. Given that 0<b<π, state the values of the constants a,b and c. [4]



  8. y=atan(xb)+c
    The graph passes throught the points (0,1),(π4,+) and (π2,3).
    atan(0b)+c=1atanb+c=1(1)atan(π4b)+c=1(2)atan(π2b)+c=3(3)(2)(1)a[tan(π4b)+tanb]=2(3)(2),a[tan(π2b)tan(π4b)]=2 tan(π4b)+tanb=tan(π2b)tan(π4b)tan(π4b)=12[tan(π2b)tanb]1tanb1+tanb=12[1tanbtanb]1tanb1+tanb=1tan2b2tanb2tanb2tan2b=1tan2b+tanbtan3btan3btan2b+tanb1=0tan2b(tanb1)+tanb1=0(tanb1)(tan2b+1)=0 For 0<b<π,tan2b+1>0 tanb1=0tanb=1b=π4
    Substituting b=π4 in equation (2),c=1
    Substituting b =π4 and c=1 in equation (1),
    atanπ4+1=1a+1=1a=2

  9. The fifth, sixth and seventh terms of a geometric progression are 8k, 12 and 2k respectively.Given that k is negative, find the sum to infinity of the progression. [4]



  10. In a G . P,u5=8ku6=12u7=2k 128k=2k12k2=9k=3(k<0) u5=24u6=12u7=6r=612=12ar=24a(12)4=24a=384
    Let the sum to infinity be S, then
    S=a1r=384112=768

  11. The equation of a curve is y=(2k3)x2kx(k2), where k is a constant. The line y=3x4 is a tangent to the curve. Find the value of k. [5]



  12.  Curve :y=(2k3)x2kx(k2) Line :y=3x4
    At the point of intersection line and curve,
    (2k3)x2kx(k2)=3x4 (2k3)x2(k+3)x+6k=0
    Since the line is tangent to the curve,
     Discriminant =0(k+3)24(2k3)(6k)=0k2+6k+94(2k2+15k18)=0k2+6k+9+8k260k+72=09k254k+81=0k26k+9=0(k3)2=0k=3

  13. (a) Prove the identity 12sin2θ1sin2θ1tan2θ. [2]
    (b) Hence solve the equation 12sin2θ1sin2θ=2tan4θ for 0θ180. [3]



  14. 12sin2θ1sin2θ=cos2θsin2θcos2θ=cos2θcos2θsin2θcos2θ=1tan2θ
    12sin2θ1sin2θ=2tan4θ1tan2θ=2tan4θ2tan4θ+tan2θ1=0(2tan2θ1)(tan2θ+1)=0sincottan2θ+1>02tan2θ1=0tan2θ=12tanθ=12 or tanθ=12θ=144.7 or θ=35.3


  15. The diagram shows a symmetrical metal plate. The plate is made by removing two identical piecesfrom a circular disc with centre C. The boundary of the plate consists of two arcs PS and QR of the original circle and two semicircles with PQ and RS as diameters. The radius of the circle with centre C is 4 cm, and PQ=RS=4 cm also.
    (a) Show that angle PCS=23π radians. [2]
    (b) Find the exact perimeter of the plate. [3]
    (c) Show that the area of the plate is (203π+83)cm2. [5]




  16.  (a) PCQ is equilateral.
    PCQ=π3PCS=ππ3=2π3
     (b)  arc length of PS= arc length of SR=4×2π3=8π3 cm
     arc length of semicircle PQ= arc length of semicircle SR=π×42=2π cm perimeter of metal plate =2(8π3+2π)=28π3 cm

     (c) A1= area of sector - area of triangle=12×42×π334×42=8π343A2= area of semicircle =2π area of metal plate = area of C2(A1+A2)=π×422(8π343+2π)=(20π3+83)cm2

  17. Functions f and g are defined as follows:
    f(x)=(x2)24 for x2g(x)=ax+2 for xR
    where a is a constant.
    (a) State the range of f. [1]
    (b) Find f1(x). [2]
    (c) Given that a=53, solve the equation f(x)=g(x). [3]
    (d) Given instead that ggf1(12)=62, find the possible values of a. [5]



  18. f(x)=(x2)24,x2g(x)=ax+2,xR
     (a)   range of f={yy4,yR}
     (b)  Let f1(x)=yf(y)=x(y2)24=x(y2)2=x+4y=±x+4+2

    Since f1(x) is the reflection of f(x) in the line y=x, f1(x)=x+4+2.
     (c)  When a=53,g(x)=53x+2f(x)=g(x)(x2)24=53x+2x24x=53x+23x212x=5x+63x27x6=0(3x+2)(x3)=0x=23 or x=3
     (d) ggf1(12)=62g(g(f1(12)))=62g(g(12+4+2))=62g(g(6))=62g(6a+2)=62a(6a+2)+2=626a2+2a60=03a2+a30=0(3a+10)(a3)=0 a=103 or a=3

  19. The equation of a circle is x2+y24x+6y77=0.
    (a) Find the x-coordinates of the points A and B where the circle intersects the x-axis. [2]
    (b) Find the point of intersection of the tangents to the circle at A and B.
    [6]



  20. x2+y24x+6y77=0x2+y24x+6y=77x24x+4+y2+6y+9=77+13(x2)2+(y+3)2=90
    Let O be the centere of tre circle.
    The coordinates of the point O is (2,3).
    When the circle interseets x-axis, y=0.
     (x2)2+9=90(x2)2=81x2=±9 x=29 or x=2+9 x=7 or x=11
    The circle intersects x-axis at A(7,0) and B(11,0).
    Gradient of AO=32+7=13
    Gradient of tangent at A=3
    Equation of tangent at A is y=3(x+7)
    Gradient of BO=3211=13
    Gradient of tangent at B=3.
    Equation of tangent at B is y=3(x11)
    At the point of intersection of two tangents,
    3(x+7)=3(x11)x+7=x+11x=2 y=27
      The point of intersection of the two tangents is (2,27).

  21. The equation of a curve is y=23x+4x.
    (a) Find the equation of the normal to the curve at the point (4,4), giving your answer in the form y=mx+c. [5]
    (b) Find the coordinates of the stationary point. [3]
    (c) Determine the nature of the stationary point. [2]
    (d) Find the exact area of the region bounded by the curve, the x-axis and the lines x=0 and x=4. [4]



  22.  (a)  Curve: y=23x+4x
    dydx=223x+4ddx(3x+4)1=33x+41
    At the point (4,4),
    dydx=312+41=341=14
    Gradient of normal at (4,4) is 4.
    Equation of normal to the curve at (4,4) is
    y4=4(x4)y=4x12 (b)  When dydx=033x+41=03x+4=33x+4=9x=53 When x=53y=23(53)+453=133
    The stationary point is (53,133).
     (c) d2ydx2=ddx(33x+41)=ddx(3(3x+4)1/21)=92(3x+4)3/2 When x=53d2ydx2=923(53)+4<0
    (53,133) is a maximum.
     (d)  required area =40[2(3x+4)1/2x]dx=240(3x+4)1/2dx40xdx=2340(3x+4)1/2d(3x+4)40xdx=49[(3x+4)3/2]40x22]40=49[648]162=1529

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم