Processing math: 2%

May-June-21-CIE-9709-11 : AS and A Level - Problems and Solutions

2021 (May-June) CIE (9709-Pure Mathematics 1), Paper 1/11 ၏ Question နှင့် Solution များ ဖြစ်ပါသည်။ Question Paper ကို ဒီနေရာမှာ Download ယူနိုင်ပါသည်။

  1. The equation of a curve is such that dydx=3x4+32x3. It is given that the curve passes through the point (12,4). Find the equation of the curve. [4]



  2. dydx=3x4+32x3y=(3x4+32x3)dx=3x4dx+32x3dx=1x3+8x4+C
    The curve passes through the point (12,4).

  3. The sum of the first 20 terms of an arithmetic progression is 405 and the sum of the first 40 terms is 1410 .Find the 60^{\text{th}} term of the progression. [5]



  4. Let the first term be a, the common difference be d and the sum to first n terms be S_n of given A.P.
    \begin{aligned} &\\ \therefore\ S_{20} &=405 \\\\ \frac{20}{2}\{2 a+19 d\} &=405 \\\\ 2 a+19 d &=40.5 \ldots (1)\\\\ S_{40} &=1410 \\\\ \frac{40}{2}\{2 a+39 d\} &=1410 \\\\ 2 a+39 d &=70.5 \ldots (2)\\\\ \end{aligned}
    Solving equation (1) and (2),
    \begin{aligned} &\\ a=6, d &=\frac{3}{2} \\\\ \therefore\ 60^{\text {th }} \text { term } &=a+59 d \\\\ &=6+59 \times \frac{3}{2} \\\\ &=94.5 \end{aligned}

  5. (a) Find the first three terms in the expansion of (3 - 2x)^5 in ascending powers of x. [3]
    (b) Hence find the coefficient of x^2 in the expansion of (4 + x)^2(3-2x)^5.[3] [4]



  6. \begin{aligned} (3-2 x)^{5}&=3^{5} 5\left(3^{4}\right)(2 x)+10\left(3^{3}\right)(2 \times)^{2}+\cdots \\\\ &=24^{3}-810 x+1080 x^{2}+\cdots \\\\ (4+x)^{2}&=16+8 x+x^{2} \\\\ (4+x)^{2}(3+2 x)^{5}&=\left(16+8 x+x^{2}\right)\left(2 y^{3}-810 x+1080 x^{2}+\cdots\right) \\\\ \therefore & \quad\text { Coefficient of } x^{2} \text { in the expansion of }(4+x)^{2}(3+2 x)^{5} \\\\ &=16(1080)-8(80)+1(243) \\\\ &=11043 \end{aligned}


  7. The diagram shows part of the graph of y = a \tan (x - b) + c. Given that 0 < b < \pi, state the values of the constants a, b and c. [4]



  8. y=a \tan (x-b)+c\\\\
    The graph passes throught the points (0,-1),\left(\dfrac{\pi}{4},+\right) and \left(\dfrac{\pi}{2}, 3\right).
    \begin{aligned} &\\ &a \tan (0-b)+c=-1\\\\ &-a \tan b+c=-1 \ldots (1)\\\\ &a \tan \left(\frac{\pi}{4}-b\right)+c=1 \ldots(2)\\\\ &a \tan \left(\frac{\pi}{2}-b\right)+c=3 \ldots(3)\\\\ &(2)-(1)\\\\ &a\left[\tan \left(\frac{\pi}{4}-b\right)+\tan b\right]=2\\\\ &(3)-(2), \\\\ &a\left[\tan \left(\frac{\pi}{2}-b\right)-\tan \left(\frac{\pi}{4}-b\right)\right]=2\\\\ &\therefore\ \tan \left(\frac{\pi}{4}-b\right)+\tan b=\tan \left(\frac{\pi}{2}-b\right)-\tan \left(\frac{\pi}{4}-b\right)\\\\ &\tan \left(\frac{\pi}{4}-b\right) =\frac{1}{2}\left[\tan \left(\frac{\pi}{2}-b\right)-\tan b\right] \\\\ &\frac{1-\tan b}{1+\tan b} =\frac{1}{2}\left[\frac{1}{\tan b}-\tan b\right] \\\\ &\frac{1-\tan b}{1+\tan b} =\frac{1-\tan ^{2} b}{2 \tan b}\\\\ &2 \tan b-2 \tan ^{2} b =1-\tan ^{2} b+\tan b-\tan ^{3} b\\\\ &\tan ^{3} b-\tan ^{2} b+\tan b-1=0 \\\\ &\tan ^{2} b(\tan b-1)+\tan b-1=0\\\\ &(\tan b-1)\left(\tan ^{2} b+1\right)=0\\\\ &\text{ For } 0 < b<\pi, \tan ^{2} b+1>0\\\\ &\therefore \ \tan b-1=0\\\\ &\tan b=1\\\\ &b=\frac{\pi}{4}\\\\ \end{aligned}
    Substituting b=\dfrac{\pi}{4} in equation (2),c=1\\\\\\\\
    Substituting b =\dfrac{\pi}{4} and c=1 in equation (1),
    \begin{aligned} &\\ &-a \tan \frac{\pi}{4}+1 =-1 \\\\ &-a+1 =-1 \\\\ &a =2 \end{aligned}

  9. The fifth, sixth and seventh terms of a geometric progression are 8k, -12 and 2k respectively.Given that k is negative, find the sum to infinity of the progression. [4]



  10. \begin{aligned} \text{In a G . P,}& \\\\ u_{5} & =8 k \\\\ u_{6} & =-12 \\\\ u_{7} & =2 k \\\\ \therefore\ \frac{-12}{8 k} & =\frac{2 k}{-12} \\\\ k^{2} & =9 \\\\ k & =-3(\because k<0)\\\\ \therefore\ u_{5} & =-24 \\\\ u_{6} &=-12 \\\\ u_{7} &=-6 \\\\ r &=\frac{-6}{-12} \\\\ &=\frac{1}{2} \\\\ a r &=-24 \\\\ a\left(\frac{1}{2}\right)^{4} &=-24\\\\ a&=-384\\\\ \end{aligned}
    Let the sum to infinity be S, then
    \begin{aligned} &\\ S &=\frac{a}{1-r} \\\\ &=\frac{-384}{1-\frac{1}{2}} \\\\ &=-768 \end{aligned}

  11. The equation of a curve is y = (2k - 3)x^2 - kx - (k - 2), where k is a constant. The line y = 3x - 4 is a tangent to the curve. Find the value of k. [5]



  12. \begin{aligned} \text{ Curve }: y&=(2 k-3) x^{2}-k x-(k-2)\\\\ \text{ Line }: y&=3 x-4\\\\ \end{aligned}
    At the point of intersection line and curve,
    \begin{aligned} &(2 k-3) x^{2}-k x-(k-2)=3 x-4 \\\\ \therefore\ &(2 k-3) x^{2}-(k+3) x+6-k=0\\\\ \end{aligned}
    Since the line is tangent to the curve,
    \begin{aligned} &\\ &\text{ Discriminant } =0\\\\ &(k+3)^{2}-4(2 k-3)(6-k)=0\\\\ &k^{2}+6 k+9-4\left(-2 k^{2}+15 k-18\right)=0 \\\\ &k^{2}+6 k+9+8 k^{2}-60 k+72=0 \\\\ &9 k^{2}-54 k+81=0 \\\\ &k^{2}-6 k+9=0 \\\\ &(k-3)^{2}=0 \\\\ &k=3 \end{aligned}

  13. (a) Prove the identity \dfrac{1-2 \sin ^{2} \theta}{1-\sin ^{2} \theta} \equiv 1-\tan ^{2} \theta. [2]
    (b) Hence solve the equation \dfrac{1-2 \sin ^{2} \theta}{1-\sin ^{2} \theta}=2 \tan ^{4} \theta for 0^{\circ} \leq \theta \leq 180^{\circ}. [3]



  14. \begin{aligned} \dfrac{1-2 \sin ^{2} \theta}{1-\sin ^{2} \theta} &=\dfrac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta} \\\\ &=\dfrac{\cos ^{2} \theta}{\cos ^{2} \theta}-\dfrac{\sin ^{2} \theta}{\cos ^{2} \theta} \\\\ &=1-\tan ^{2} \theta\\\\ \end{aligned}
    \begin{aligned} &\dfrac{1-2 \sin ^{2} \theta}{1-\sin ^{2} \theta}=2 \tan ^{4} \theta \\\\ &1-\tan ^{2} \theta=2 \tan ^{4} \theta \\\\ &2 \tan ^{4} \theta+\tan ^{2} \theta-1=0 \\\\ &\left(2 \tan ^{2} \theta-1\right)\left(\tan ^{2} \theta+1\right)=0 \\\\ &\sin \cot \tan ^{2} \theta+1>0 \\\\ & 2 \tan ^{2} \theta-1=0 \\\\ &\tan ^{2} \theta=\dfrac{1}{2} \\\\ &\tan \theta=-\dfrac{1}{\sqrt{2}} \text { or } \tan \theta=\dfrac{1}{\sqrt{2}} \\\\ &\theta=144.7^{\circ} \text { or } \theta=35.3^{\circ} \end{aligned}


  15. The diagram shows a symmetrical metal plate. The plate is made by removing two identical piecesfrom a circular disc with centre C. The boundary of the plate consists of two arcs PS and QR of the original circle and two semicircles with PQ and RS as diameters. The radius of the circle with centre C is 4 cm, and PQ = RS = 4 cm also.
    (a) Show that angle PCS = \dfrac{2}{3}\pi radians. [2]
    (b) Find the exact perimeter of the plate. [3]
    (c) Show that the area of the plate is \left(\dfrac{20}{3} \pi+8 \sqrt{3}\right) \mathrm{cm}^{2}. [5]




  16. \text{ (a) } \quad \triangle P C Q is equilateral.
    \begin{aligned} &\\ \therefore \quad \angle P C Q &=\frac{\pi}{3} \\\\ \angle P C S &=\pi-\frac{\pi}{3} \\\\ &=\frac{2 \pi}{3} \\\\ \end{aligned}
    \begin{aligned} \text{ (b) } \quad & \qquad \text{ arc length of } PS \\\\ &= \text{ arc length of } SR \\\\ &= 4 \times \frac{2 \pi}{3} \\\\ &= \frac{8 \pi}{3} \mathrm{~cm}\\\\ \end{aligned}
    \begin{aligned} &\quad \text{ arc length of semicircle } PQ \\\\ &= \text{ arc length of semicircle } SR\\\\ &=\pi \times \frac{4}{2} \\\\ &=2 \pi\ \mathrm{cm}\\\\ &\quad \text{ perimeter of metal plate }\\\\ &=2\left(\frac{8 \pi}{3}+2 \pi\right) \\\\ &=\frac{28 \pi}{3} \mathrm{~cm}\\\\ \end{aligned}

    \begin{aligned} \text{ (c) } \quad A_{1} &= \text{ area of sector - area of triangle}\\\\ &=\frac{1}{2} \times 4^{2} \times \frac{\pi}{3}-\frac{\sqrt{3}}{4} \times 4^{2} \\\\ &=\frac{8 \pi}{3}-4 \sqrt{3} \\\\ A_{2} &=\text { area of semicircle } \\\\ &=2 \pi\\\\ &\quad\text{ area of metal plate }\\\\ &=\text { area of } \odot C-2\left(A_{1}+A_{2}\right) \\\\ &=\pi \times 4^{2}-2\left(\frac{8 \pi}{3}-4 \sqrt{3}+2 \pi\right) \\\\ &=\left(\frac{20 \pi}{3}+8 \sqrt{3}\right) \mathrm{cm}^{2} \end{aligned}

  17. Functions f and g are defined as follows:
    \begin{aligned} &\\ &f(x)=(x-2)^{2}-4 \text { for } x \geq 2 \\\\ &g(x)=a x+2 \text { for } x \in \mathbb{R}\\\\ \end{aligned}
    where a is a constant.
    (a) State the range of f. [1]
    (b) Find f^{-1}(x). [2]
    (c) Given that a = -\dfrac{5}{3}, solve the equation f(x) = g(x). [3]
    (d) Given instead that ggf^{-1}(12) = 62, find the possible values of a. [5]



  18. \begin{aligned} f(x)=(x-2)^{2}-4 , x \geq 2\\\\ g(x)=a x+2, x \in R\\\\ \end{aligned}
    \text{ (a) }\ range of f=\{y \mid y \geq-4, y \in R\}
    \begin{aligned} &\\ \text{ (b) } \text{ Let } f^{-1}(x)&=y\\\\ f(y) &=x \\\\ (y-2)^{2}-4 &=x \\\\ (y-2)^{2} &=x+4 \\\\ y &=\pm \sqrt{x+4}+2\\\\ \end{aligned}

    Since f^{-1}(x) is the reflection of f(x) in the line y=x, f^{-1}(x)=\sqrt{x+4}+2.
    \begin{aligned} &\\ \text{ (c) }\hspace{1cm}\text { When } a &=-\frac{5}{3},\\\\ g(x) &=-\frac{5}{3} x+2 \\\\ f(x) &=g(x) \\\\ (x-2)^{2}-4 &=-\frac{5}{3} x+2 \\\\ x^{2}-4 x &=-\frac{5}{3} x+2 \\\\ 3 x^{2}-12 x &=-5 x+6 \\\\ 3 x^{2}-7 x-6 &=0 \\\\ (3 x+2)(x-3) &=0 \\\\ x=-\frac{2}{3} \text { or } x &=3\\\\ \end{aligned}
    \begin{aligned} \text{ (d) }\hspace{1cm} g g f^{-1}(12) &=62 \\\\ g\left(g\left(f^{-1}(12)\right)\right) &=62 \\\\ g(g(\sqrt{12+4}+2)) &=62 \\\\ g(g(6)) &=62 \\\\ g(6 a+2) &=62 \\\\ a(6 a+2)+2 &=62 \\\\ 6 a^{2}+2 a-60 &=0 \\\\ 3 a^{2}+a-30 &=0 \\\\ (3 a+10)(a-3) &=0\\\\ \therefore\ a=-\frac{10}{3} \text { or } a &=3 \end{aligned}

  19. The equation of a circle is x^2 + y^2 - 4x + 6y - 77 = 0.
    (a) Find the x-coordinates of the points A and B where the circle intersects the x-axis. [2]
    (b) Find the point of intersection of the tangents to the circle at A and B.
    [6]



  20. \begin{aligned} & x^{2}+y^{2}-4 x+6 y-77=0 \\\\ & x^{2}+y^{2}-4 x+6 y=77 \\\\ & x^{2}-4 x+4+y^{2}+6 y+9=77+13 \\\\ &(x-2)^{2}+(y+3)^{2}=90\\\\ \end{aligned}
    Let O be the centere of tre circle.
    \therefore The coordinates of the point O is (2,-3)\\\\ .
    When the circle interseets x-axis, y=0\\\\ .
    \begin{aligned} &\\ \therefore\ &(x-2)^{2}+9=90 \\\\ &(x-2)^{2}=81 \\\\ & x-2=\pm 9 \\\\ \therefore\ & x=2-9 \text { or } x=2+9 \\\\ \therefore\ & x=-7 \text { or } x=11\\\\ \end{aligned}
    \therefore The circle intersects x-axis at A(-7,0) and B(11, 0).\\\\
    Gradient of A O=\dfrac{-3}{2+7}=-\dfrac{1}{3}\\\\
    \therefore Gradient of tangent at A=3\\\\
    Equation of tangent at A is y=3(x+7)\\\\
    Gradient of B O=\dfrac{-3}{2-11}=\dfrac{1}{3}\\\\
    Gradient of tangent at B=-3.\\\\
    Equation of tangent at B is y=-3(x-11)\\\\
    At the point of intersection of two tangents,
    \begin{aligned} &\\ 3(x+7) &=-3(x-11) \\\\ x+7 &=-x+11 \\\\ x &=2 \\\\ \therefore\ y &=27\\\\ \end{aligned}
    \therefore\ The point of intersection of the two tangents is (2,27).

  21. The equation of a curve is y=2 \sqrt{3 x+4}-x.
    (a) Find the equation of the normal to the curve at the point (4,4), giving your answer in the form y=m x+c. [5]
    (b) Find the coordinates of the stationary point. [3]
    (c) Determine the nature of the stationary point. [2]
    (d) Find the exact area of the region bounded by the curve, the x-axis and the lines x = 0 and x = 4. [4]



  22. \text{ (a) } Curve: y=2 \sqrt{3 x+4}-x
    \begin{aligned} &\\ \dfrac{d y}{d x} &=\dfrac{2}{2 \sqrt{3 x+4}} \dfrac{d}{d x}(3 x+4)-1 \\\\ &=\dfrac{3}{\sqrt{3 x+4}}-1 \end{aligned}
    At the point (4,4),
    \begin{aligned} &\\ \dfrac{d y}{d x} &=\dfrac{3}{\sqrt{12+4}}-1 \\\\ &=\dfrac{3}{4}-1=-\dfrac{1}{4}\\\\ \end{aligned}
    \therefore Gradient of normal at (4,4) is 4.
    Equation of normal to the curve at (4,4) is
    \begin{aligned} &\\ y-4 &=4(x-4) \\\\ y &=4 x-12\\\\ \text{ (b) } \quad \text{ When } \dfrac{d y}{d x}&=0\\\\ \dfrac{3}{\sqrt{3 x+4}}-1&=0\\\\ \sqrt{3 x+4} &=3 \\\\ 3 x+4 &=9 \\\\ x &=\dfrac{5}{3} \\\\ \text { When } x &=\dfrac{5}{3} \\\\ y &=2 \sqrt{3\left(\dfrac{5}{3}\right)+4}-\dfrac{5}{3} \\\\ &=\dfrac{13}{3}\\\\ \end{aligned}
    \therefore The stationary point is \left(\dfrac{5}{3}, \dfrac{13}{3}\right).
    \begin{aligned} &\\ \text{ (c) } \quad \dfrac{d^{2} y}{d x^{2}} &=\dfrac{d}{d x}\left(\dfrac{3}{\sqrt{3 x+4}}-1\right) \\\\ &=\dfrac{d}{d x}\left(3(3 x+4)^{-1/2}-1\right) \\\\ &=-\dfrac{9}{2(3 x+4)^{3 / 2}}\\\\ \text { When } x&=\dfrac{5}{3}\\\\ \dfrac{d^{2} y}{d x^{2}}&=\dfrac{-9}{2 \sqrt{3\left(\dfrac{5}{3}\right)+4}}<0\\\\ \end{aligned}
    \therefore\left(\dfrac{5}{3}, \dfrac{13}{3}\right) is a maximum.
    \begin{aligned} &\\ \text{ (d) }\quad\text { required area } &=\displaystyle\int_{0}^{4}\left[2(3 x+4)^{1/2}-x\right] d x \\\\ &=2 \displaystyle\int_{0}^{4}(3 x+4)^{1 / 2} d x-\displaystyle\int_{0}^{4} x d x \\\\ &=\dfrac{2}{3} \displaystyle\int_{0}^{4}(3 x+4)^{1/2} d(3 x+4)-\displaystyle\int_{0}^{4} x d x \\\\ &\left.=\dfrac{4}{9}\left[(3 x+4)^{3 / 2}\right]_{0}^{4}-\dfrac{x^{2}}{2}\right]_{0}^{4} \\\\ &=\dfrac{4}{9}[64-8]-\dfrac{16}{2}\\\\ &=\dfrac{152}{9} \end{aligned}

စာဖတ်သူ၏ အမြင်ကို လေးစားစွာစောင့်မျှော်လျက်!
أحدث أقدم